These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30424108)

  • 1. Microfabricated Vapor Cells with Reflective Sidewalls for Chip Scale Atomic Sensors.
    Han R; You Z; Zhang F; Xue H; Ruan Y
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications.
    Chutani R; Maurice V; Passilly N; Gorecki C; Boudot R; Abdel Hafiz M; Abbé P; Galliou S; Rauch JY; de Clercq E
    Sci Rep; 2015 Sep; 5():14001. PubMed ID: 26365754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wafer-Level Filling of MEMS Vapor Cells Based on Chemical Reaction and Evaporation.
    Guo P; Meng H; Dan L; Zhao J
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-written vapor cells for chip-scale atomic sensing and spectroscopy.
    Lucivero VG; Zanoni A; Corrielli G; Osellame R; Mitchell MW
    Opt Express; 2022 Jul; 30(15):27149-27163. PubMed ID: 36236892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature atomic scalar magnetometer for space based on the rubidium isotope
    Korth H; Strohbehn K; Tejada F; Andreou AG; Kitching J; Knappe S; Lehtonen SJ; London SM; Kafel M
    J Geophys Res Space Phys; 2016 Aug; 121(8):7870-7880. PubMed ID: 27774373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-performance frequency stability compact CPT clock based on a Cs-Ne microcell.
    Boudot R; Liu X; Abbé P; Chutani R; Passilly N; Galliou S; Gorecki C; Giordano V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2584-7. PubMed ID: 23192824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfabricated chip-scale rubidium plasma light source for miniature atomic clocks.
    Venkatraman V; Pétremand Y; Affolderbach C; Mileti G; de Rooij NF; Shea H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):448-56. PubMed ID: 22481778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study of the application feasibility of a novel chip-scale atomic clock scheme.
    Lin H; Tian Y; Chen J; Gu S
    Rev Sci Instrum; 2019 May; 90(5):053111. PubMed ID: 31153232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkali Vapor MEMS Cells Technology toward High-Vacuum Self-Pumping MEMS Cell for Atomic Spectroscopy.
    Knapkiewicz P
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflection-type vapor cell for micro atomic clocks using local anodic bonding of 45° mirrors.
    Nishino H; Yano Y; Hara M; Toda M; Kajita M; Ido T; Ono T
    Opt Lett; 2021 May; 46(10):2272-2275. PubMed ID: 33988562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cs vapor microcells with Ne-He buffer gas mixture for high operation-temperature miniature atomic clocks.
    Kroemer E; Abdel Hafiz M; Maurice V; Fouilland B; Gorecki C; Boudot R
    Opt Express; 2015 Jul; 23(14):18373-80. PubMed ID: 26191895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer-level vapor cells filled with laser-actuated hermetic seals for integrated atomic devices.
    Maurice V; Carlé C; Keshavarzi S; Chutani R; Queste S; Gauthier-Manuel L; Cote JM; Vicarini R; Abdel Hafiz M; Boudot R; Passilly N
    Microsyst Nanoeng; 2022; 8():129. PubMed ID: 36533261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chip-scale atomic clock based on 87Rb with improved frequency stability.
    Knappe S; Schwindt P; Shah V; Hollberg L; Kitching J; Liew L; Moreland J
    Opt Express; 2005 Feb; 13(4):1249-53. PubMed ID: 19494996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress on Micro-Fabricated Alkali Metal Vapor Cells.
    Wang X; Ye M; Lu F; Mao Y; Tian H; Li J
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous excitation of
    Gan Q; Shang J; Ji Y; Wu L
    Rev Sci Instrum; 2017 Nov; 88(11):115009. PubMed ID: 29195395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of Temperature-Induced Light-Shift Effects in Miniaturized Atomic Clocks.
    Vicarini R; Abdel Hafiz M; Maurice V; Passilly N; Kroemer E; Ribetto L; Gaff V; Gorecki C; Galliou S; Boudot R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Dec; 66(12):1962-1967. PubMed ID: 31395545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flight demonstration of a miniature atomic scalar magnetometer based on a microfabricated rubidium vapor cell.
    Korth H; Kitching JE; Bonnell JW; Bryce BA; Clark GB; Edens WK; Gardner CB; Rachelson W; Slagle A
    Rev Sci Instrum; 2023 Mar; 94(3):035002. PubMed ID: 37012772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetically induced absorption scheme for vapor-cell atomic clock.
    Brazhnikov D; Ignatovich S; Vishnyakov V; Boudot R; Skvortsov M
    Opt Express; 2019 Dec; 27(25):36034-36045. PubMed ID: 31873390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A polarization converting device for an interfering enhanced CPT atomic clock.
    Wang K; Tian Y; Yin Y; Wang Y; Gu S
    Rev Sci Instrum; 2017 Nov; 88(11):113107. PubMed ID: 29195405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chip-Scale Ultra-Low Field Atomic Magnetometer Based on Coherent Population Trapping.
    Hong HG; Park SE; Lee SB; Heo MS; Park J; Kim TH; Kim HY; Kwon TY
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.