BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30424129)

  • 1. Emerging Anti-Fouling Methods: Towards Reusability of 3D-Printed Devices for Biomedical Applications.
    Lepowsky E; Tasoglu S
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Reusability of 3D-Printed Photopolymer Microfluidic Chips for Urine Processing.
    Lepowsky E; Amin R; Tasoglu S
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.
    Kotz F; Helmer D; Rapp BE
    Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology.
    Gokaltun A; Yarmush ML; Asatekin A; Usta OB
    Technology (Singap World Sci); 2017 Mar; 5(1):1-12. PubMed ID: 28695160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printing of transparent bio-microfluidic devices in PEG-DA.
    Urrios A; Parra-Cabrera C; Bhattacharjee N; Gonzalez-Suarez AM; Rigat-Brugarolas LG; Nallapatti U; Samitier J; DeForest CA; Posas F; Garcia-Cordero JL; Folch A
    Lab Chip; 2016 Jun; 16(12):2287-94. PubMed ID: 27217203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Typography-Like 3D-Printed Templates for the Lithography-Free Fabrication of Microfluidic Chips.
    Su W; Li Y; Zhang L; Sun J; Liu S; Ding X
    SLAS Technol; 2020 Feb; 25(1):82-87. PubMed ID: 31381466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-efficient fabrication method for 3D-printed microfluidic devices.
    Jin Y; Xiong P; Xu T; Wang J
    Sci Rep; 2022 Jan; 12(1):1233. PubMed ID: 35075184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Precision Stereolithography of Biomicrofluidic Devices.
    Kuo AP; Bhattacharjee N; Lee YS; Castro K; Kim YT; Folch A
    Adv Mater Technol; 2019 Jun; 4(6):. PubMed ID: 32490168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate.
    Kotz F; Mader M; Dellen N; Risch P; Kick A; Helmer D; Rapp BE
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications.
    Zhang H; Chiao M
    J Med Biol Eng; 2015; 35(2):143-155. PubMed ID: 25960703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fused Deposition Modeling of Microfluidic Chips in Transparent Polystyrene.
    Mader M; Rein C; Konrat E; Meermeyer SL; Lee-Thedieck C; Kotz-Helmer F; Rapp BE
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.