These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization. Mohanty S Lab Chip; 2012 Oct; 12(19):3624-36. PubMed ID: 22899251 [TBL] [Abstract][Full Text] [Related]
6. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731 [TBL] [Abstract][Full Text] [Related]
7. Fiber Optofluidic Technology Based on Optical Force and Photothermal Effects. Zhang C; Xu B; Gong C; Luo J; Zhang Q; Gong Y Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31357458 [TBL] [Abstract][Full Text] [Related]
8. Coherently tunable metalens tweezers for optofluidic particle routing. Yin S; He F; Kubo W; Wang Q; Frame J; Green NG; Fang X Opt Express; 2020 Dec; 28(26):38949-38959. PubMed ID: 33379453 [TBL] [Abstract][Full Text] [Related]
9. Microscale Diffractive Lenses Integrated into Microfluidic Devices for Size-Selective Optical Trapping of Particles. Pope BL; Zhang M; Jo S; Dragnea B; Jacobson SC Anal Chem; 2024 Jul; 96(29):11845-11852. PubMed ID: 38976499 [TBL] [Abstract][Full Text] [Related]
10. A microfluidic-based hydrodynamic trap for single particles. Johnson-Chavarria EM; Tanyeri M; Schroeder CM J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467 [TBL] [Abstract][Full Text] [Related]
11. On-chip supercontinuum optical trapping and resonance excitation of microspheres. Nitkowski A; Gondarenko A; Lipson M Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830 [TBL] [Abstract][Full Text] [Related]
12. Combined acoustic and optical trapping. Thalhammer G; Steiger R; Meinschad M; Hill M; Bernet S; Ritsch-Marte M Biomed Opt Express; 2011 Oct; 2(10):2859-70. PubMed ID: 22025990 [TBL] [Abstract][Full Text] [Related]
13. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation. Simmons CS; Knouf EC; Tewari M; Lin LY J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841 [TBL] [Abstract][Full Text] [Related]
15. Optoelectrical microfluidics as a promising tool in biology. Mishra A; Kwon JS; Thakur R; Wereley S Trends Biotechnol; 2014 Aug; 32(8):414-21. PubMed ID: 24998518 [TBL] [Abstract][Full Text] [Related]
16. Acoustic valves in microfluidic channels for droplet manipulation. Qin X; Wei X; Li L; Wang H; Jiang Z; Sun D Lab Chip; 2021 Aug; 21(16):3165-3173. PubMed ID: 34190278 [TBL] [Abstract][Full Text] [Related]
17. Optothermal Manipulations of Colloidal Particles and Living Cells. Lin L; Hill EH; Peng X; Zheng Y Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720 [TBL] [Abstract][Full Text] [Related]
19. Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation. Nan F; Yan Z Nano Lett; 2018 Nov; 18(11):7400-7406. PubMed ID: 30351963 [TBL] [Abstract][Full Text] [Related]
20. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles. Al-Ali A; Waheed W; Abu-Nada E; Alazzam A J Chromatogr A; 2022 Aug; 1676():463268. PubMed ID: 35779391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]