These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30424149)

  • 1. CO₂ Laser-Based Rapid Prototyping of Micropumps.
    Strike Z; Ghofrani K; Backhouse C
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Prototyping of Multi-Functional and Biocompatible Parafilm
    Wei Y; Wang T; Wang Y; Zeng S; Ho YP; Ho HP
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diode Laser and Polyimide Tape Enables Cheap and Fast Fabrication of Flexible Microfluidic Sensing Devices.
    Thaweeskulchai T; Schulte A
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Laser Manufacturing of Microfluidic Devices from Glass Substrates.
    Wlodarczyk KL; Carter RM; Jahanbakhsh A; Lopes AA; Mackenzie MD; Maier RRJ; Hand DP; Maroto-Valer MM
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial.
    Morbioli GG; Speller NC; Stockton AM
    Anal Chim Acta; 2020 Oct; 1135():150-174. PubMed ID: 33070852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter.
    Yuen PK; Goral VN
    Lab Chip; 2010 Feb; 10(3):384-7. PubMed ID: 20091012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method.
    Thompson BL; Ouyang Y; Duarte GR; Carrilho E; Krauss ST; Landers JP
    Nat Protoc; 2015 Jun; 10(6):875-86. PubMed ID: 25974096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a T-Shaped Microfluidic Channel Using a Consumer Laser Cutter and Application to Monodisperse Microdroplet Formation.
    Sasaki N; Sugenami E
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid prototyping of functional acoustic devices using laser manufacturing.
    Zhang X; Son R; Lin YJ; Gill A; Chen S; Qi T; Choi D; Wen J; Lu Y; Lin NYC; Chiou PY
    Lab Chip; 2022 Nov; 22(22):4327-4334. PubMed ID: 36285690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
    Faustino V; Catarino SO; Lima R; Minas G
    J Biomech; 2016 Jul; 49(11):2280-2292. PubMed ID: 26671220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser.
    Wlodarczyk KL; Hand DP; Maroto-Valer MM
    Sci Rep; 2019 Dec; 9(1):20215. PubMed ID: 31882878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.
    Goswami D; Munera JC; Pal A; Sadri B; Scarpetti CLPG; Martinez RV
    Nano Lett; 2018 Jun; 18(6):3616-3622. PubMed ID: 29775318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid, maskless 3D prototyping for fabrication of capillary circuits: Toward urinary protein detection.
    Yan S; Zhu Y; Tang SY; Li Y; Zhao Q; Yuan D; Yun G; Zhang J; Zhang S; Li W
    Electrophoresis; 2018 Apr; 39(7):957-964. PubMed ID: 29292831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation.
    Yap YC; Guijt RM; Dickson TC; King AE; Breadmore MC
    Anal Chem; 2013 Nov; 85(21):10051-6. PubMed ID: 24063252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast production of microfluidic devices by CO2 laser engraving of wax-coated glass slides.
    da Costa ET; Santos MSF; Jiao H; do Lago CL; Gutz IG; Garcia CD
    Electrophoresis; 2016 Jul; 37(12):1691-5. PubMed ID: 27028724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating compact and microscale features in paper-based devices by laser cutting.
    Mahmud MA; Blondeel EJ; Kaddoura M; MacDonald BD
    Analyst; 2016 Nov; 141(23):6449-6454. PubMed ID: 27792224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO
    Nasser GA; Fath El-Bab AMR; Abdel-Mawgood AL; Mohamed H; Saleh AM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31600884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Rapid Prototyping Technique for Microfluidics with High Robustness and Flexibility.
    Liu Z; Xu W; Hou Z; Wu Z
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PMMA/PDMS valves and pumps for disposable microfluidics.
    Zhang W; Lin S; Wang C; Hu J; Li C; Zhuang Z; Zhou Y; Mathies RA; Yang CJ
    Lab Chip; 2009 Nov; 9(21):3088-94. PubMed ID: 19823724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing.
    Cosson S; Aeberli LG; Brandenberg N; Lutolf MP
    Lab Chip; 2015 Jan; 15(1):72-6. PubMed ID: 25373917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.