These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 30424153)
1. Features in Microfluidic Paper-Based Devices Made by Laser Cutting: How Small Can They Be? Mahmud MA; Blondeel EJM; Kaddoura M; MacDonald BD Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424153 [TBL] [Abstract][Full Text] [Related]
2. Creating compact and microscale features in paper-based devices by laser cutting. Mahmud MA; Blondeel EJ; Kaddoura M; MacDonald BD Analyst; 2016 Nov; 141(23):6449-6454. PubMed ID: 27792224 [TBL] [Abstract][Full Text] [Related]
8. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer. Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851 [TBL] [Abstract][Full Text] [Related]
9. Laser-etched grooves for rapid fluid delivery for a paper-based chemiresistive biosensor. Modha S; Shen Y; Chamouni H; Mulchandani A; Tsutsui H Biosens Bioelectron; 2021 May; 180():113090. PubMed ID: 33662845 [TBL] [Abstract][Full Text] [Related]
10. Saturation Equation: An Analytical Expression for Partial Saturation during Wicking Flow in Paper Microfluidic Channels. Verma S; Toley BJ Langmuir; 2024 Jun; 40(22):11419-11427. PubMed ID: 38770942 [TBL] [Abstract][Full Text] [Related]
11. Porous Cellulose Substrate Study to Improve the Performance of Diffusion-Based Ionic Strength Sensors. Khosravi H; Mehrdel P; Martínez JAL; Casals-Terré J Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363629 [TBL] [Abstract][Full Text] [Related]
12. Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Evans E; Gabriel EF; Coltro WK; Garcia CD Analyst; 2014 May; 139(9):2127-32. PubMed ID: 24618915 [TBL] [Abstract][Full Text] [Related]
13. Rapid and alternative fabrication method for microfluidic paper based analytical devices. Malekghasemi S; Kahveci E; Duman M Talanta; 2016 Oct; 159():401-411. PubMed ID: 27474324 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices. Shigemori H; Maejima K; Shibata H; Hiruta Y; Citterio D Mikrochim Acta; 2023 Jan; 190(2):48. PubMed ID: 36622479 [TBL] [Abstract][Full Text] [Related]
16. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery. Rath D; Toley BJ ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580 [TBL] [Abstract][Full Text] [Related]
17. Influence of Geometry and Surrounding Conditions on Fluid Flow in Paper-Based Devices. Walji N; MacDonald BD Micromachines (Basel); 2016 Apr; 7(5):. PubMed ID: 30404248 [TBL] [Abstract][Full Text] [Related]