These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30424153)

  • 1. Features in Microfluidic Paper-Based Devices Made by Laser Cutting: How Small Can They Be?
    Mahmud MA; Blondeel EJM; Kaddoura M; MacDonald BD
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating compact and microscale features in paper-based devices by laser cutting.
    Mahmud MA; Blondeel EJ; Kaddoura M; MacDonald BD
    Analyst; 2016 Nov; 141(23):6449-6454. PubMed ID: 27792224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemp-Based Microfluidics.
    Temirel M; Dabbagh SR; Tasoglu S
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33673025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs).
    Strong EB; Schultz SA; Martinez AW; Martinez NW
    Sci Rep; 2019 Jan; 9(1):7. PubMed ID: 30626903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying Wicking Speeds in Paper-Based Microfluidic Devices by Laser-Etching.
    Kalish B; Tan MK; Tsutsui H
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32823829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing flow rate in single paper layer, rapid flow microfluidic paper-based analytical devices.
    Macleod Briongos I; Call ZD; Henry CS; Bark DL
    Microfluid Nanofluidics; 2023; 27(10):70. PubMed ID: 37719231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid Flow Dynamics in Partially Saturated Paper.
    Kumar A; Hatayama J; Soucy A; Carpio E; Rahmani N; Anagnostopoulos C; Faghri M
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-etched grooves for rapid fluid delivery for a paper-based chemiresistive biosensor.
    Modha S; Shen Y; Chamouni H; Mulchandani A; Tsutsui H
    Biosens Bioelectron; 2021 May; 180():113090. PubMed ID: 33662845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saturation Equation: An Analytical Expression for Partial Saturation during Wicking Flow in Paper Microfluidic Channels.
    Verma S; Toley BJ
    Langmuir; 2024 Jun; 40(22):11419-11427. PubMed ID: 38770942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous Cellulose Substrate Study to Improve the Performance of Diffusion-Based Ionic Strength Sensors.
    Khosravi H; Mehrdel P; Martínez JAL; Casals-Terré J
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices.
    Evans E; Gabriel EF; Coltro WK; Garcia CD
    Analyst; 2014 May; 139(9):2127-32. PubMed ID: 24618915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and alternative fabrication method for microfluidic paper based analytical devices.
    Malekghasemi S; Kahveci E; Duman M
    Talanta; 2016 Oct; 159():401-411. PubMed ID: 27474324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of laser printed microfluidic paper-based analytical devices (LP-µPADs) for point-of-care applications.
    Ghosh R; Gopalakrishnan S; Savitha R; Renganathan T; Pushpavanam S
    Sci Rep; 2019 May; 9(1):7896. PubMed ID: 31133720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices.
    Shigemori H; Maejima K; Shibata H; Hiruta Y; Citterio D
    Mikrochim Acta; 2023 Jan; 190(2):48. PubMed ID: 36622479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery.
    Rath D; Toley BJ
    ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Geometry and Surrounding Conditions on Fluid Flow in Paper-Based Devices.
    Walji N; MacDonald BD
    Micromachines (Basel); 2016 Apr; 7(5):. PubMed ID: 30404248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully enclosed microfluidic paper-based analytical devices.
    Schilling KM; Lepore AL; Kurian JA; Martinez AW
    Anal Chem; 2012 Feb; 84(3):1579-85. PubMed ID: 22229653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step Hot Microembossing for Fabrication of Paper-Based Microfluidic Chips in 10 Seconds.
    Juang YJ; Wang Y; Hsu SK
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33120953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paper based analytical devices for blood grouping: a comprehensive review.
    Ebrahimi Fana S; Paknejad M; Aminian M
    Biomed Microdevices; 2021 Jul; 23(3):34. PubMed ID: 34213635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.