These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30424186)

  • 1. Microfluidic Formation of Double-Stacked Planar Bilayer Lipid Membranes by Controlling the Water-Oil Interface.
    Shoji K; Kawano R
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Nanopore-Tethered Gold Needle Electrodes for Channel Current Recording.
    Ikarashi S; Akai H; Koiwa H; Izawa Y; Takahashi J; Mabuchi T; Shoji K
    ACS Nano; 2023 Jun; 17(11):10598-10607. PubMed ID: 37222595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcavity volume control on a tip of Ag/AgCl electrodes for stable channel current measurements of biological nanopores.
    Hasegawa N; Shoji K
    Analyst; 2022 Mar; 147(6):1191-1198. PubMed ID: 35195650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis.
    Funakoshi K; Suzuki H; Takeuchi S
    Anal Chem; 2006 Dec; 78(24):8169-74. PubMed ID: 17165804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption Kinetics Dictate Monolayer Self-Assembly for Both Lipid-In and Lipid-Out Approaches to Droplet Interface Bilayer Formation.
    Venkatesan GA; Lee J; Farimani AB; Heiranian M; Collier CP; Aluru NR; Sarles SA
    Langmuir; 2015 Dec; 31(47):12883-93. PubMed ID: 26556227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Membrane Protein Deinsertion-Associated Currents with Nanoneedle-Supported Bilayers to Discover Pore Formation Mechanisms.
    Shoji K; Kawano R; White RJ
    Langmuir; 2020 Sep; 36(34):10012-10021. PubMed ID: 32787048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Langmuir; 2006 Feb; 22(4):1937-42. PubMed ID: 16460131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet-based lipid bilayer system integrated with microfluidic channels for solution exchange.
    Tsuji Y; Kawano R; Osaki T; Kamiya K; Miki N; Takeuchi S
    Lab Chip; 2013 Apr; 13(8):1476-81. PubMed ID: 23450304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recessed Ag/AgCl Microelectrode-Supported Lipid Bilayer for Nanopore Sensing.
    Shoji K; Kawano R; White RJ
    Anal Chem; 2020 Aug; 92(15):10856-10862. PubMed ID: 32597640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid Bilayers Manipulated through Monolayer Technologies for Studies of Channel-Membrane Interplay.
    Oiki S; Iwamoto M
    Biol Pharm Bull; 2018; 41(3):303-311. PubMed ID: 29491206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays.
    Nguyen MA; Srijanto B; Collier CP; Retterer ST; Sarles SA
    Lab Chip; 2016 Sep; 16(18):3576-88. PubMed ID: 27513561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous measurement of surface and bilayer tension in a microfluidic chip.
    Khangholi N; Seemann R; Fleury JB
    Biomicrofluidics; 2020 Mar; 14(2):024117. PubMed ID: 32549923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract.
    Taylor GJ; Sarles SA
    Langmuir; 2015; 31(1):325-37. PubMed ID: 25514167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilayer lipid membranes from falling droplets.
    Zagnoni M; Sandison ME; Marius P; Morgan H
    Anal Bioanal Chem; 2009 Mar; 393(6-7):1601-5. PubMed ID: 19152090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings.
    Czekalska MA; Kaminski TS; Jakiela S; Tanuj Sapra K; Bayley H; Garstecki P
    Lab Chip; 2015 Jan; 15(2):541-8. PubMed ID: 25412368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Planar Asymmetric Lipid Bilayer Membrane Formation toward Biological High-Throughput Assay.
    Gotanda M; Kamiya K; Osaki T; Fujii S; Misawa N; Miki N; Takeuchi S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4496-4499. PubMed ID: 30441350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid Bilayer Experiments with Contact Bubble Bilayers for Patch-Clampers.
    Iwamoto M; Oiki S
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of droplet networks that function in aqueous environments.
    Villar G; Heron AJ; Bayley H
    Nat Nanotechnol; 2011 Nov; 6(12):803-8. PubMed ID: 22056724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient integration of the viral portal proteins from different types of phages into planar bilayers for the black lipid membrane analysis.
    Jing P; Paraiso H; Burris B
    Mol Biosyst; 2016 Feb; 12(2):480-9. PubMed ID: 26661052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contact bubble bilayers with flush drainage.
    Iwamoto M; Oiki S
    Sci Rep; 2015 Mar; 5():9110. PubMed ID: 25772819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.