These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30424197)

  • 1. Effect of Heat Accumulation on Femtosecond Laser Reductive Sintering of Mixed CuO/NiO Nanoparticles.
    Mizoshiri M; Nishitani K; Hata S
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu Patterning Using Femtosecond Laser Reductive Sintering of CuO Nanoparticles under Inert Gas Injection.
    Mizoshiri M; Yoshidomi K
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Substrates on Femtosecond Laser Pulse-Induced Reductive Sintering of Cobalt Oxide Nanoparticles.
    Mizoshiri M; Yoshidomi K; Darkhanbaatar N; Khairullina EM; Tumkin II
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser digital patterning of conductive electrodes using metal oxide nanomaterials.
    Nam VB; Giang TT; Koo S; Rho J; Lee D
    Nano Converg; 2020 Jul; 7(1):23. PubMed ID: 32632474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly crystalline Ni/NiO hybrid electrodes processed by inkjet printing and laser-induced reductive sintering under ambient conditions.
    Rho Y; Kang KT; Lee D
    Nanoscale; 2016 Apr; 8(16):8976-85. PubMed ID: 27073978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Writing of Copper Micropatterns Using Near-Infrared Femtosecond Laser-Pulse-Induced Reduction of Glyoxylic Acid Copper Complex.
    Mizoshiri M; Aoyama K; Uetsuki A; Ohishi T
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31212926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors.
    Lee D; Paeng D; Park HK; Grigoropoulos CP
    ACS Nano; 2014 Oct; 8(10):9807-14. PubMed ID: 25130917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Laser Writing of Microscale Metal Oxide Gas Sensors from Liquid Precursors.
    Castonguay AC; Yi N; Li B; Zhao J; Li H; Gao Y; Nova NN; Tiwari N; Zarzar LD; Cheng H
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28163-28173. PubMed ID: 35686829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles.
    Huang Y; Xie X; Li M; Xu M; Long J
    Opt Express; 2021 Feb; 29(3):4453-4463. PubMed ID: 33771023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing.
    Ji SY; Choi W; Kim HY; Jeon JW; Cho SH; Chang WS
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29425144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review.
    Hwang E; Hong J; Yoon J; Hong S
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing.
    Wang H; Liu S; Zhang YL; Wang JN; Wang L; Xia H; Chen QD; Ding H; Sun HB
    Sci Technol Adv Mater; 2015 Apr; 16(2):024805. PubMed ID: 27877766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropatterning of porphyrin nanotubes thin film using focused laser writing.
    Gupta J; Lim X; Sow CH; Vijayan C
    J Nanosci Nanotechnol; 2011 May; 11(5):4029-33. PubMed ID: 21780401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size Effects of Copper(I) Oxide Nanospheres on Their Morphology on Copper Thin Films under Near-Infrared Femtosecond Laser Irradiation.
    Mizoshiri M; Tran TD; Nguyen KVT
    Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Stage Femtosecond Laser-Assisted Deposition of Gold Micropatterns on Dielectric Substrate.
    Lipateva T; Lipatiev A; Lotarev S; Shakhgildyan G; Fedotov S; Sigaev V
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates.
    Zacharatos F; Theodorakos I; Karvounis P; Tuohy S; Braz N; Melamed S; Kabla A; de la Vega F; Andritsos K; Hatziapostolou A; Karnakis D; Zergioti I
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30384412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Writing of Cu Patterns on Polydimethylsiloxane Substrates Using Femtosecond Laser Pulse-Induced Reduction of Glyoxylic Acid Copper Complex.
    Ha NP; Ohishi T; Mizoshiri M
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33925411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser Direct Writing of Sol-Gel-Derived Vacancy-Rich Functional Oxide Semiconductors.
    Long J; Chen X; Mao T; Xue S; Wang Y; Xu Y; Pi W; Lu J; Luo W; Xiong W
    ACS Nano; 2023 Jun; 17(11):10033-10040. PubMed ID: 37216376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper and Nickel Microsensors Produced by Selective Laser Reductive Sintering for Non-Enzymatic Glucose Detection.
    Tumkin II; Khairullina EM; Panov MS; Yoshidomi K; Mizoshiri M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering.
    Liu S; Reed SN; Higgins MJ; Titus MS; Kramer-Bottiglio R
    Nanoscale; 2019 Oct; 11(38):17615-17629. PubMed ID: 31274138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.