These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 30424320)
1. Micropipette-Based Microfluidic Device for Monodisperse Microbubbles Generation. Toshiyuki Matsumi C; José da Silva W; Kurt Schneider F; Miguel Maia J; E M Morales R; Duarte Araújo Filho W Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424320 [TBL] [Abstract][Full Text] [Related]
2. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation. Khan AH; Jiang X; Kaushik A; Nair HS; Edirisinghe M; Mercado-Shekhar KP; Shekhar H; Dalvi SV Langmuir; 2022 Aug; 38(33):10288-10304. PubMed ID: 35943351 [TBL] [Abstract][Full Text] [Related]
3. Preparation of suspensions of phospholipid-coated microbubbles by coaxial electrohydrodynamic atomization. Farook U; Stride E; Edirisinghe MJ J R Soc Interface; 2009 Mar; 6(32):271-7. PubMed ID: 18647738 [TBL] [Abstract][Full Text] [Related]
4. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles. Dhanaliwala AH; Chen JL; Wang S; Hossack JA Microfluid Nanofluidics; 2013 Mar; 14(3-4):457-467. PubMed ID: 23439786 [TBL] [Abstract][Full Text] [Related]
5. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation. Lin H; Chen J; Chen C Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369 [TBL] [Abstract][Full Text] [Related]
6. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device. Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259 [TBL] [Abstract][Full Text] [Related]
7. High-Speed Generation of Microbubbles with Constant Cumulative Production in a Glass Capillary Microfluidic Bubble Generator. Yu J; Cheng W; Ni J; Li C; Su X; Yan H; Bao F; Hou L Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930722 [TBL] [Abstract][Full Text] [Related]
8. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing. Parhizkar M; Stride E; Edirisinghe M Lab Chip; 2014 Jul; 14(14):2437-46. PubMed ID: 24837066 [TBL] [Abstract][Full Text] [Related]
9. Novel Preparation of Monodisperse Microbubbles by Integrating Oscillating Electric Fields with Microfluidics. Kothandaraman A; Harker A; Ventikos Y; Edirisinghe M Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424430 [TBL] [Abstract][Full Text] [Related]
10. T-Shaped Microfluidic Junction Processing of Porous Alginate-Based Films and Their Characteristics. Mutlu B; Farhan M; Kucuk I Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31450763 [TBL] [Abstract][Full Text] [Related]
11. Microbubble generation in a co-flow device operated in a new regime. Castro-Hernández E; van Hoeve W; Lohse D; Gordillo JM Lab Chip; 2011 Jun; 11(12):2023-9. PubMed ID: 21431188 [TBL] [Abstract][Full Text] [Related]
12. Scaled-Up Production of Monodisperse, Dual Layer Microbubbles Using Multi-Array Microfluidic Module for Medical Imaging and Drug Delivery. Kendall MR; Bardin D; Shih R; Dayton PA; Lee AP Bubble Sci Eng Technol; 2012 May; 4(1):12-20. PubMed ID: 23049622 [TBL] [Abstract][Full Text] [Related]
13. A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles. Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA Lab Chip; 2018 Aug; 18(17):2653-2664. PubMed ID: 30070301 [TBL] [Abstract][Full Text] [Related]
14. Effect of the Mixing Region Geometry and Collector Distance on Microbubble Formation in a Microfluidic Device Coupled with ac-dc Electric Fields. Kothandaraman A; Alfadhl Y; Qureshi M; Edirisinghe M; Ventikos Y Langmuir; 2019 Aug; 35(31):10052-10060. PubMed ID: 30995839 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of transiently stable albumin-coated microbubbles via a flow-focusing microfluidic device. Chen JL; Dhanaliwala AH; Dixon AJ; Klibanov AL; Hossack JA Ultrasound Med Biol; 2014 Feb; 40(2):400-9. PubMed ID: 24342914 [TBL] [Abstract][Full Text] [Related]
16. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Hettiarachchi K; Talu E; Longo ML; Dayton PA; Lee AP Lab Chip; 2007 Apr; 7(4):463-8. PubMed ID: 17389962 [TBL] [Abstract][Full Text] [Related]
18. Generating Lifetime-Enhanced Microbubbles by Decorating Shells with Silicon Quantum Nano-Dots Using a 3-Series T-Junction Microfluidic Device. Wu B; Luo CJ; Palaniappan A; Jiang X; Gultekinoglu M; Ulubayram K; Bayram C; Harker A; Shirahata N; Khan AH; Dalvi SV; Edirisinghe M Langmuir; 2022 Sep; 38(36):10917-10933. PubMed ID: 36018789 [TBL] [Abstract][Full Text] [Related]
19. Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device. Dixon AJ; Dhanaliwala AH; Chen JL; Hossack JA Ultrasound Med Biol; 2013 Jul; 39(7):1267-76. PubMed ID: 23643062 [TBL] [Abstract][Full Text] [Related]
20. On-chip microfluidic generation of monodisperse bubbles for liquid interfacial tension measurement. Wang C; Cao J; Zhou Y; Xia XH Talanta; 2018 Jan; 176():646-651. PubMed ID: 28917802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]