These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30424342)

  • 1. Rapid Laser Manufacturing of Microfluidic Devices from Glass Substrates.
    Wlodarczyk KL; Carter RM; Jahanbakhsh A; Lopes AA; Mackenzie MD; Maier RRJ; Hand DP; Maroto-Valer MM
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser.
    Wlodarczyk KL; Hand DP; Maroto-Valer MM
    Sci Rep; 2019 Dec; 9(1):20215. PubMed ID: 31882878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective laser ablation for
    Sumantakul S; Remcho VT
    Lab Chip; 2023 Jul; 23(14):3194-3206. PubMed ID: 37222391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bonding Strength of a Glass Microfluidic Device Fabricated by Femtosecond Laser Micromachining and Direct Welding.
    Kim S; Kim J; Joung YH; Choi J; Koo C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30513880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of an Implantable Blood Pressure Sensor Packaged by Ultrafast Laser Microwelding.
    Kim S; Park J; So S; Ahn S; Choi J; Koo C; Joung YH
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30991708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass.
    Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K
    Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices.
    Matellan C; Del Río Hernández AE
    Sci Rep; 2018 May; 8(1):6971. PubMed ID: 29725034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.
    Liao Y; Song J; Li E; Luo Y; Shen Y; Chen D; Cheng Y; Xu Z; Sugioka K; Midorikawa K
    Lab Chip; 2012 Feb; 12(4):746-9. PubMed ID: 22231027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing.
    Owusu-Ansah E; Dalton C
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-Pulse Laser-Assisted Fabrication of a Si-SiO
    Mouskeftaras A; Beurthey S; Cogan J; Hallewell G; Leroy O; Grojo D; Perrin-Terrin M
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Silicon Microfluidic Chips for Acoustic Particle Focusing Using Direct Laser Writing.
    Fornell A; Söderbäck P; Liu Z; De Albuquerque Moreira M; Tenje M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31972982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and verification of a glass-silicon-glass micro-/nanofluidic model for investigating multi-phase flow in shale-like unconventional dual-porosity tight porous media.
    Zhang Y; Zhou C; Qu C; Wei M; He X; Bai B
    Lab Chip; 2019 Dec; 19(24):4071-4082. PubMed ID: 31702750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Manufacturing of Glass Microstructures Using Femtosecond Laser.
    Butkutė A; Jonušauskas L
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33925098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of sealed sapphire microfluidic devices using femtosecond laser micromachining.
    Elgohary A; Block E; Squier J; Koneshloo M; Shaha RK; Frick C; Oakey J; Aryana SA
    Appl Opt; 2020 Oct; 59(30):9285-9291. PubMed ID: 33104645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Prototyping of Multi-Functional and Biocompatible Parafilm
    Wei Y; Wang T; Wang Y; Zeng S; Ho YP; Ho HP
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green microfluidic devices made of corn proteins.
    Luecha J; Hsiao A; Brodsky S; Liu GL; Kokini JL
    Lab Chip; 2011 Oct; 11(20):3419-25. PubMed ID: 21918783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices.
    Giridhar MS; Seong K; Schülzgen A; Khulbe P; Peyghambarian N; Mansuripur M
    Appl Opt; 2004 Aug; 43(23):4584-9. PubMed ID: 15376436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Repetition Rate UV versus VIS Picosecond Laser Fabrication of 3D Microfluidic Channels Embedded in Photosensitive Glass.
    Jipa F; Iosub S; Calin B; Axente E; Sima F; Sugioka K
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30065197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast production of microfluidic devices by CO2 laser engraving of wax-coated glass slides.
    da Costa ET; Santos MSF; Jiao H; do Lago CL; Gutz IG; Garcia CD
    Electrophoresis; 2016 Jul; 37(12):1691-5. PubMed ID: 27028724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.