BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30424360)

  • 21. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering.
    Jin G; He R; Sha B; Li W; Qing H; Teng R; Xu F
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():995-1005. PubMed ID: 30184829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats.
    Heidari M; Bahrami H; Ranjbar-Mohammadi M
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():218-229. PubMed ID: 28575978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrospinning on 3D Printed Polymers for Mechanically Stabilized Filter Composites.
    Kozior T; Mamun A; Trabelsi M; Wortmann M; Lilia S; Ehrmann A
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31818001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-Voltage Continuous Electrospinning Patterning.
    Li X; Li Z; Wang L; Ma G; Meng F; Pritchard RH; Gill EL; Liu Y; Huang YY
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32120-32131. PubMed ID: 27807979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Note: a multifunctional electrospinning system for manufacturing diversified nanofibrous structures.
    Ru C; Wang F; Ge C; Luo J
    Rev Sci Instrum; 2013 Aug; 84(8):086107. PubMed ID: 24007127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled drug release from a polymer matrix by patterned electrospun nanofibers with controllable hydrophobicity.
    Xu H; Li H; Chang J
    J Mater Chem B; 2013 Sep; 1(33):4182-4188. PubMed ID: 32260972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin.
    Sheikh FA; Ju HW; Lee JM; Moon BM; Park HJ; Lee OJ; Kim JH; Kim DK; Park CH
    Nanomedicine; 2015 Apr; 11(3):681-91. PubMed ID: 25555351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced osteogenic differentiation with 3D electrospun nanofibrous scaffolds.
    Nguyen LT; Liao S; Chan CK; Ramakrishna S
    Nanomedicine (Lond); 2012 Oct; 7(10):1561-75. PubMed ID: 22709343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Overview on Application of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings.
    Pilehvar-Soltanahmadi Y; Dadashpour M; Mohajeri A; Fattahi A; Sheervalilou R; Zarghami N
    Mini Rev Med Chem; 2018 Feb; 18(5):414-427. PubMed ID: 28271816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review.
    Lyu C; Zhao P; Xie J; Dong S; Liu J; Rao C; Fu J
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Parameter Study for 3D-Printing Organized Nanofibrous Collagen Scaffolds Using Direct-Write Electrospinning.
    Alexander FA; Johnson L; Williams K; Packer K
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functionality in Electrospun Nanofibrous Membranes Based on Fiber's Size, Surface Area, and Molecular Orientation.
    Matsumoto H; Tanioka A
    Membranes (Basel); 2011 Aug; 1(3):249-64. PubMed ID: 24957735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of electrospun nanofiber scaffold by short wave length ultraviolet radiation treatment and its potential applications in tissue engineering.
    Yixiang D; Yong T; Liao S; Chan CK; Ramakrishna S
    Tissue Eng Part A; 2008 Aug; 14(8):1321-9. PubMed ID: 18466068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From 1D Nanofibers to 3D Nanofibrous Aerogels: A Marvellous Evolution of Electrospun SiO
    Liu C; Wang S; Wang N; Yu J; Liu YT; Ding B
    Nanomicro Lett; 2022 Sep; 14(1):194. PubMed ID: 36161372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A direct 3D suspension near-field electrospinning technique for the fabrication of polymer nanoarrays.
    Nagle AR; Fay CD; Xie Z; Wallace GG; Wang X; Higgins MJ
    Nanotechnology; 2019 May; 30(19):195301. PubMed ID: 30673646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the electrospinning process of fabricating nanofibrous membranes to filter PM2.5.
    Cao M; Gu F; Rao C; Fu J; Zhao P
    Sci Total Environ; 2019 May; 666():1011-1021. PubMed ID: 30970468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional nanofiber scaffolds are superior to two-dimensional mats in micro-oriented extraction of chlorobenzenes.
    Bagheri H; Manshaei F; Rezvani O
    Mikrochim Acta; 2018 Jun; 185(7):322. PubMed ID: 29884926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.