These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30424365)

  • 41. Mixing and Flow Transition in an Optimized Electrokinetic Turbulent Micromixer.
    Nan K; Shi Y; Zhao T; Tang X; Zhu Y; Wang K; Bai J; Zhao W
    Anal Chem; 2022 Sep; 94(35):12231-12239. PubMed ID: 35999194
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution.
    Chang CC; Kuo CY; Wang CY
    Electrophoresis; 2011 Nov; 32(23):3341-7. PubMed ID: 22072500
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ac electroosmosis in rectangular microchannels.
    Campisi M; Accoto D; Dario P
    J Chem Phys; 2005 Nov; 123(20):204724. PubMed ID: 16351310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. AC electrokinetic isolation and detection of extracellular vesicles from dental pulp stem cells: Theoretical simulation incorporating fluid mechanics.
    Hadady H; Karamali F; Ejeian F; Haghjooy Javanmard S; Rafiee L; Nasr Esfahani MH
    Electrophoresis; 2021 Oct; 42(20):2018-2026. PubMed ID: 34013529
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.
    Lewpiriyawong N; Xu G; Yang C
    Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrode-based AC electrokinetics of proteins: A mini-review.
    Laux EM; Bier FF; Hölzel R
    Bioelectrochemistry; 2018 Apr; 120():76-82. PubMed ID: 29182911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electroosmosis modulated transient blood flow in curved microvessels: Study of a mathematical model.
    Narla VK; Tripathi D
    Microvasc Res; 2019 May; 123():25-34. PubMed ID: 30543817
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrokinetic translocation of a deformable nanoparticle controlled by field effect in nanopores.
    He X; Wang P; Shi L; Zhou T; Wen L
    Electrophoresis; 2021 Nov; 42(21-22):2197-2205. PubMed ID: 34409625
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A visual portable microfluidic experimental device with multiple electric field regulation functions.
    Guo W; Tao Y; Liu W; Song C; Zhou J; Jiang H; Ren Y
    Lab Chip; 2022 Apr; 22(8):1556-1564. PubMed ID: 35352749
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient nanoparticle focusing utilizing cascade AC electroosmotic flow.
    Abdelghany A; Yamasaki K; Ichikawa Y; Motosuke M
    Electrophoresis; 2022 Sep; 43(16-17):1755-1764. PubMed ID: 35736538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrorotation of leaky-dielectric and conducting microspheres in asymmetric electrolytes and angular velocity reversal.
    Miloh T; Nagler J
    Electrophoresis; 2020 Aug; 41(15):1296-1307. PubMed ID: 32357251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications.
    Xuan X
    Electrophoresis; 2019 Sep; 40(18-19):2484-2513. PubMed ID: 30816561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced particle trapping performance of induced charge electroosmosis.
    Tao Y; Ren Y; Liu W; Wu Y; Jia Y; Lang Q; Jiang H
    Electrophoresis; 2016 May; 37(10):1326-36. PubMed ID: 26914414
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid mixing with high-throughput in a semi-active semi-passive micromixer.
    Kunti G; Bhattacharya A; Chakraborty S
    Electrophoresis; 2017 May; 38(9-10):1310-1317. PubMed ID: 28256732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of Sequential Micromixing Driven by Sinusoidally Shaped Induced-Charge Electroosmotic Flow.
    Sun H; Li Z; Wu Y; Fan X; Zhu M; Chen T; Sun L
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422414
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Travelling-Wave Electrophoresis, Electro-Hydrodynamics, Electro-Rotation, and Symmetry- Breaking of a Polarizable Dimer in Non-Uniform Fields.
    Miloh T; Avital EJ
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893170
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AC Electroosmosis Effect on Microfluidic Heterogeneous Immunoassay Efficiency.
    Selmi M; Belmabrouk H
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32218325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.