These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68. Electrolyte effect in induced charge electroosmosis. Feng H; Huang Y; Wong TN; Duan F Soft Matter; 2017 Jul; 13(28):4864-4870. PubMed ID: 28631789 [TBL] [Abstract][Full Text] [Related]
69. AC electrokinetic phenomena generated by microelectrode structures. Hart R; Oh J; Capurro J; Noh HM J Vis Exp; 2008 Jul; (17):. PubMed ID: 19066515 [TBL] [Abstract][Full Text] [Related]
70. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers. Ansari MA; Kim KY; Kim SM Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137 [TBL] [Abstract][Full Text] [Related]
71. Computer simulations of electrokinetic transport in microfabricated channel structures. Ermakov SV; Jacobson SC; Ramsey JM Anal Chem; 1998 Nov; 70(21):4494-504. PubMed ID: 21644694 [TBL] [Abstract][Full Text] [Related]
72. Parametric Study of an Electroosmotic Micromixer with Heterogeneous Charged Surface Patches. Ahmed F; Kim KY Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400390 [TBL] [Abstract][Full Text] [Related]
73. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel. Ge Z; Wang W; Yang C Anal Chim Acta; 2015 Feb; 858():91-7. PubMed ID: 25597807 [TBL] [Abstract][Full Text] [Related]
74. A Novel Micromixer That Exploits Electrokinetic Vortices Generated on a Janus Droplet Surface. Wang C; He Y Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258210 [TBL] [Abstract][Full Text] [Related]
75. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency. An R; Massa K; Wipf DO; Minerick AR Biomicrofluidics; 2014 Nov; 8(6):064126. PubMed ID: 25553200 [TBL] [Abstract][Full Text] [Related]
76. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Huang MZ; Yang RJ; Tai CH; Tsai CH; Fu LM Biomed Microdevices; 2006 Dec; 8(4):309-15. PubMed ID: 17003961 [TBL] [Abstract][Full Text] [Related]
77. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating. Ge Z; Wang W; Yang C Lab Chip; 2011 Apr; 11(7):1396-402. PubMed ID: 21331425 [TBL] [Abstract][Full Text] [Related]
78. Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments. Guo W; Tao Y; Mao K; Liu W; Xue R; Ge Z; Ren Y Lab Chip; 2022 Dec; 23(1):157-167. PubMed ID: 36484422 [TBL] [Abstract][Full Text] [Related]
79. Three-dimensional analyses of cells' positioning on the quadrupole-electrode microfluid chip considering the coupling effect of nDEP, ACEO, and ETF. Ji J; Zhang J; Wang J; Huang Q; Jiang X; Zhang W; Sang S; Guo X; Li S Biosens Bioelectron; 2020 Oct; 165():112398. PubMed ID: 32729519 [TBL] [Abstract][Full Text] [Related]
80. On two-liquid AC electroosmotic system for thin films. Navarkar A; Amiroudine S; Demekhin EA Electrophoresis; 2016 Mar; 37(5-6):727-35. PubMed ID: 26773725 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]