These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30424392)

  • 1. A Dynamic Model of Drag Force for Catalytic Micromotors Based on Navier⁻Stokes Equations.
    Wang Z; Chi Q; Bai T; Wang Q; Liu L
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Analysis of Drag Force for Task-Specific Micromachine at Low Reynolds Numbers.
    Wang Q; Wang Z
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.
    Li L; Wang J; Li T; Song W; Zhang G
    Soft Matter; 2014 Oct; 10(38):7511-8. PubMed ID: 25080889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Viscosity-Based Model for Bubble-Propelled Catalytic Micromotors.
    Wang Z; Chi Q; Liu L; Liu Q; Bai T; Wang Q
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driving Forces of the Bubble-Driven Tubular Micromotor Based on the Full Life-Cycle of the Bubble.
    Lin Y; Geng X; Chi Q; Wang C; Wang Z
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Understanding of Self-Propelled Janus Pt/Fe
    Kang E; Lee W; Lee H
    J Phys Chem Lett; 2023 Nov; 14(44):9811-9818. PubMed ID: 37889127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flying Squirrel-Inspired Motion Control of a Light-Deformed Pt-PAzoMA Micromotor through Drag Force Manipulation.
    Lin X; Xu B; Zhao Z; Yang X; Xing Y; You C; Kong Y; Cui J; Zhu L; Lin S; Mei Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):30106-30117. PubMed ID: 34143593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calligraphy/Painting Based on a Bioinspired Light-Driven Micromotor with Concentration-Dependent Motion Direction Reversal and Dynamic Swarming Behavior.
    Sun Y; Liu Y; Zhang D; Zhang H; Jiang J; Duan R; Xiao J; Xing J; Zhang D; Dong B
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40533-40542. PubMed ID: 31577118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching Propulsion Mechanisms of Tubular Catalytic Micromotors.
    Wrede P; Medina-Sánchez M; Fomin VM; Schmidt OG
    Small; 2021 Mar; 17(12):e2006449. PubMed ID: 33615690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to Make a Fast, Efficient Bubble-Driven Micromotor: A Mechanical View.
    Liu L; Bai T; Chi Q; Wang Z; Xu S; Liu Q; Wang Q
    Micromachines (Basel); 2017 Aug; 8(9):. PubMed ID: 30400455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-functional metal-organic frameworks-based hydrogel micromotor for uranium detection and removal.
    Zhang X; Chen L; Fu L; Feng K; Gong J; Qu J; Niu R
    J Hazard Mater; 2024 Apr; 467():133654. PubMed ID: 38341894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drag force acting on a neuromast in the fish lateral line trunk canal. II. Analytical modelling of parameter dependencies.
    Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):641-53. PubMed ID: 18926966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese Oxide Based Catalytic Micromotors: Effect of Polymorphism on Motion.
    Safdar M; Minh TD; Kinnunen N; Jänis J
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32624-32629. PubMed ID: 27933845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications.
    Dutta S; Noh S; Gual RS; Chen X; Pané S; Nelson BJ; Choi H
    Nanomicro Lett; 2023 Nov; 16(1):41. PubMed ID: 38032424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromotor Pills as a Dynamic Oral Delivery Platform.
    Karshalev E; Esteban-Fernández de Ávila B; Beltrán-Gastélum M; Angsantikul P; Tang S; Mundaca-Uribe R; Zhang F; Zhao J; Zhang L; Wang J
    ACS Nano; 2018 Aug; 12(8):8397-8405. PubMed ID: 30059616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of shear flow on the hydrodynamic drag force of a spherical particle near a wall evaluated using optical tweezers and microfluidics.
    Geonzon LC; Kobayashi M; Adachi Y
    Soft Matter; 2021 Sep; 17(34):7914-7920. PubMed ID: 34373877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO
    Wu Y; Dong R; Zhang Q; Ren B
    Nanomicro Lett; 2017; 9(3):30. PubMed ID: 30393725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Buoyant force-induced continuous floating and sinking of Janus micromotors.
    Wu M; Koizumi Y; Nishiyama H; Tomita I; Inagi S
    RSC Adv; 2018 Sep; 8(58):33331-33337. PubMed ID: 35548146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors.
    Hayakawa M; Onoe H; Nagai KH; Takinoue M
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Fabrication of Bubble-Propelled Micromotors for Wastewater Treatment.
    Ren M; Guo W; Guo H; Ren X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22761-22767. PubMed ID: 31203603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.