BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30424394)

  • 1. Low-Cost, Accessible Fabrication Methods for Microfluidics Research in Low-Resource Settings.
    Nguyen HT; Thach H; Roy E; Huynh K; Perrault CM
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication.
    Jiménez-Díaz E; Cano-Jorge M; Zamarrón-Hernández D; Cabriales L; Páez-Larios F; Cruz-Ramírez A; Vázquez-Victorio G; Fiordelisio T; Hautefeuille M
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation.
    Mohd Asri MA; Nordin AN; Ramli N
    Biomicrofluidics; 2021 Dec; 15(6):061502. PubMed ID: 34777677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid, low-cost fabrication of electronic microfluidics via inkjet-printing and xurography (MINX).
    Kikkeri K; Naba FM; Voldman J
    Biosens Bioelectron; 2023 Oct; 237():115499. PubMed ID: 37473550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rapid Prototyping Technique for Microfluidics with High Robustness and Flexibility.
    Liu Z; Xu W; Hou Z; Wu Z
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homebrew Photolithography for the Rapid and Low-Cost, "Do It Yourself" Prototyping of Microfluidic Devices.
    Todd D; Krasnogor N
    ACS Omega; 2023 Sep; 8(38):35393-35409. PubMed ID: 37780017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic diagnostics for the developing world.
    Mao X; Huang TJ
    Lab Chip; 2012 Apr; 12(8):1412-6. PubMed ID: 22406768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.
    Morgan AJ; Hidalgo San Jose L; Jamieson WD; Wymant JM; Song B; Stephens P; Barrow DA; Castell OK
    PLoS One; 2016; 11(4):e0152023. PubMed ID: 27050661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Low-Cost Microfluidic Detection in Point of Care Diagnostics.
    Raju SP; Chu X
    J Med Syst; 2018 Aug; 42(10):184. PubMed ID: 30167799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
    Tsao CW
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking the clean room barrier: exploring low-cost alternatives for microfluidic devices.
    Rodríguez CF; Andrade-Pérez V; Vargas MC; Mantilla-Orozco A; Osma JF; Reyes LH; Cruz JC
    Front Bioeng Biotechnol; 2023; 11():1176557. PubMed ID: 37180035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and inexpensive method for the simple fabrication of PDMS-based electrochemical sensors for detection in microfluidic devices.
    da Silva ENT; Ferreira VS; Lucca BG
    Electrophoresis; 2019 May; 40(9):1322-1330. PubMed ID: 30657598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
    Faustino V; Catarino SO; Lima R; Minas G
    J Biomech; 2016 Jul; 49(11):2280-2292. PubMed ID: 26671220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Fabrication for Microfluidics by Conventional Techniques and Equipment Used in Mass Production.
    Naito T; Nakamura M; Kaji N; Kubo T; Baba Y; Otsuka K
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.