These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30424394)

  • 41. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper.
    Juang YJ; Hsu SK
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160629
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution.
    Kumar A; Parihar A; Panda U; Parihar DS
    ACS Appl Bio Mater; 2022 May; 5(5):2046-2068. PubMed ID: 35473316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review.
    Nadar SS; Patil PD; Tiwari MS; Ahirrao DJ
    Crit Rev Biotechnol; 2021 Nov; 41(7):1046-1080. PubMed ID: 33730940
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nano/Microfluidics for diagnosis of infectious diseases in developing countries.
    Lee WG; Kim YG; Chung BG; Demirci U; Khademhosseini A
    Adv Drug Deliv Rev; 2010 Mar; 62(4-5):449-57. PubMed ID: 19954755
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidics Based Point-of-Care Diagnostics.
    Pandey CM; Augustine S; Kumar S; Kumar S; Nara S; Srivastava S; Malhotra BD
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 29178532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices.
    Sinha A; Basu M; Chandna P
    Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Liquid polystyrene: a room-temperature photocurable soft lithography compatible pour-and-cure-type polystyrene.
    Nargang TM; Brockmann L; Nikolov PM; Schild D; Helmer D; Keller N; Sachsenheimer K; Wilhelm E; Pires L; Dirschka M; Kolew A; Schneider M; Worgull M; Giselbrecht S; Neumann C; Rapp BE
    Lab Chip; 2014 Aug; 14(15):2698-708. PubMed ID: 24887072
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography.
    Kasi DG; de Graaf MNS; Motreuil-Ragot PA; Frimat JMS; Ferrari MD; Sarro PM; Mastrangeli M; van den Maagdenberg AMJM; Mummery CL; Orlova VV
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Droplet microfluidics for synthetic biology.
    Gach PC; Iwai K; Kim PW; Hillson NJ; Singh AK
    Lab Chip; 2017 Oct; 17(20):3388-3400. PubMed ID: 28820204
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes.
    Dkhar DS; Kumari R; Malode SJ; Shetti NP; Chandra P
    J Pharm Biomed Anal; 2023 Jan; 223():115120. PubMed ID: 36343538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sepsis Care Pathway 2019.
    Labib A
    Qatar Med J; 2019; 2019(2):4. PubMed ID: 31763206
    [No Abstract]   [Full Text] [Related]  

  • 53. Microfluidic Paper-Based Analytical Devices: From Design to Applications.
    Noviana E; Ozer T; Carrell CS; Link JS; McMahon C; Jang I; Henry CS
    Chem Rev; 2021 Oct; 121(19):11835-11885. PubMed ID: 34125526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics.
    Sharma S; Zapatero-Rodríguez J; Estrela P; O'Kennedy R
    Biosensors (Basel); 2015 Aug; 5(3):577-601. PubMed ID: 26287254
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sticker Microfluidics: A Method for Fabrication of Customized Monolithic Microfluidics.
    Lai X; Lu B; Zhang P; Zhang X; Pu Z; Yu H; Li D
    ACS Biomater Sci Eng; 2019 Dec; 5(12):6801-6810. PubMed ID: 33423473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polymer microfabrication technologies for microfluidic systems.
    Becker H; Gärtner C
    Anal Bioanal Chem; 2008 Jan; 390(1):89-111. PubMed ID: 17989961
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.
    Liu R; Wang N; Kamili F; Sarioglu AF
    Lab Chip; 2016 Apr; 16(8):1350-7. PubMed ID: 27021807
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrochemical paper-based microfluidic devices.
    Adkins J; Boehle K; Henry C
    Electrophoresis; 2015 Aug; 36(16):1811-24. PubMed ID: 25820492
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid prototyping polymers for microfluidic devices and high pressure injections.
    Sollier E; Murray C; Maoddi P; Di Carlo D
    Lab Chip; 2011 Nov; 11(22):3752-65. PubMed ID: 21979377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.