These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30424394)

  • 61. Development and Characterization of a PCB-Based Microfluidic YChannel
    Kassanos P; Seichepine F; Kassanos I; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5037-5040. PubMed ID: 33019118
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fabrication of a T-Shaped Microfluidic Channel Using a Consumer Laser Cutter and Application to Monodisperse Microdroplet Formation.
    Sasaki N; Sugenami E
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562855
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.
    Fernandes SC; Wilson DJ; Mace CR
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362396
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fabrication of a Microfluidic Cell Culture Device Using Photolithographic and Soft Lithographic Techniques.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():227-233. PubMed ID: 31124120
    [TBL] [Abstract][Full Text] [Related]  

  • 66. FLASH: a rapid method for prototyping paper-based microfluidic devices.
    Martinez AW; Phillips ST; Wiley BJ; Gupta M; Whitesides GM
    Lab Chip; 2008 Dec; 8(12):2146-50. PubMed ID: 19023478
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fabrication of paper-based microfluidic devices using a 3D printer and a commercially-available wax filament.
    Espinosa A; Diaz J; Vazquez E; Acosta L; Santiago A; Cunci L
    Talanta Open; 2022 Dec; 6():. PubMed ID: 36093430
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics.
    Wang W; Zhao S; Pan T
    Lab Chip; 2009 Apr; 9(8):1133-7. PubMed ID: 19350096
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication and Hydrodynamic Characterization of a Microfluidic Device for Cell Adhesion Tests in Polymeric Surfaces.
    Ponmozhi J; Moreira JMR; Mergulhão FJ; Campos JBLM; Miranda JM
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31060288
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High-fidelity replication of thermoplastic microneedles with open microfluidic channels.
    Faraji Rad Z; Nordon RE; Anthony CJ; Bilston L; Prewett PD; Arns JY; Arns CH; Zhang L; Davies GJ
    Microsyst Nanoeng; 2017; 3():17034. PubMed ID: 31057872
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Distance-based paper/PMMA integrated ELISA-chip for quantitative detection of immunoglobulin G.
    Abate MF; Ahmed MG; Li X; Yang C; Zhu Z
    Lab Chip; 2020 Oct; 20(19):3625-3632. PubMed ID: 32901644
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fabrication of microfluidic systems in poly(dimethylsiloxane).
    McDonald JC; Duffy DC; Anderson JR; Chiu DT; Wu H; Schueller OJ; Whitesides GM
    Electrophoresis; 2000 Jan; 21(1):27-40. PubMed ID: 10634468
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Torque-actuated valves for microfluidics.
    Weibel DB; Kruithof M; Potenta S; Sia SK; Lee A; Whitesides GM
    Anal Chem; 2005 Aug; 77(15):4726-33. PubMed ID: 16053282
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A cartridge based Point-of-Care device for complete blood count.
    Abbasi U; Chowdhury P; Subramaniam S; Jain P; Muthe N; Sheikh F; Banerjee S; Kumaran V
    Sci Rep; 2019 Dec; 9(1):18583. PubMed ID: 31819075
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sacrificial layer microfluidic device fabrication methods.
    Peeni BA; Lee ML; Hawkins AR; Woolley AT
    Electrophoresis; 2006 Dec; 27(24):4888-95. PubMed ID: 17117379
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Punch card programmable microfluidics.
    Korir G; Prakash M
    PLoS One; 2015; 10(3):e0115993. PubMed ID: 25738834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.