These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30424394)

  • 81. Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics.
    Venzac B; Liu Y; Ferrante I; Vargas P; Yamada A; Courson R; Verhulsel M; Malaquin L; Viovy JL; Descroix S
    Microsyst Nanoeng; 2020; 6():18. PubMed ID: 34567633
    [TBL] [Abstract][Full Text] [Related]  

  • 82. An outlook on microfluidics: the promise and the challenge.
    Battat S; Weitz DA; Whitesides GM
    Lab Chip; 2022 Feb; 22(3):530-536. PubMed ID: 35048918
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Mobile Microfluidics.
    Alistar M
    Bioengineering (Basel); 2019 Jan; 6(1):. PubMed ID: 30609780
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Quantifying Biomolecular Binding Constants using Video Paper Analytical Devices.
    Miller BS; Parolo C; Turbé V; Keane CE; Gray ER; McKendry RA
    Chemistry; 2018 Jul; 24(39):9783-9787. PubMed ID: 29772094
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Microfluidic assembly kit based on laser-cut building blocks for education and fast prototyping.
    Gerber LC; Kim H; Riedel-Kruse IH
    Biomicrofluidics; 2015 Nov; 9(6):064105. PubMed ID: 26634013
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Microfluidics based bioimaging with cost-efficient fabrication of multi-level micrometer-sized trenches.
    Anilkumar A; Batra A; Talukder S; Sharma R
    Biomicrofluidics; 2023 May; 17(3):034103. PubMed ID: 37334275
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Microfluidic SERS devices: brightening the future of bioanalysis.
    Oliveira MJ; Dalot A; Fortunato E; Martins R; Byrne HJ; Franco R; Águas H
    Discov Mater; 2022; 2(1):12. PubMed ID: 36536830
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Prebiotic Chemistry Experiments Using Microfluidic Devices.
    Lerin-Morales KM; Olguín LF; Mateo-Martí E; Colín-García M
    Life (Basel); 2022 Oct; 12(10):. PubMed ID: 36295100
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Low Cost, Ease-of-Access Fabrication of Microfluidic Devices Using Wet Paper Molds.
    Thakur R; Fridman GY
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144030
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Recapitulating Tumor Hypoxia in a Cleanroom-Free, Liquid-Pinning-Based Microfluidic Tumor Model.
    Oh JM; Begum HM; Liu YL; Ren Y; Shen K
    ACS Biomater Sci Eng; 2022 Jul; 8(7):3107-3121. PubMed ID: 35678715
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Cellular point-of-care diagnostics using an inexpensive layer-stack microfluidic device.
    Lucas K; Oh J; Hoelzl J; Weissleder R
    Lab Chip; 2022 May; 22(11):2145-2154. PubMed ID: 35514273
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells.
    Bhat MP; Thendral V; Uthappa UT; Lee KH; Kigga M; Altalhi T; Kurkuri MD; Kant K
    Biosensors (Basel); 2022 Apr; 12(4):. PubMed ID: 35448280
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production.
    Cong H; Zhang N
    Biomicrofluidics; 2022 Mar; 16(2):021301. PubMed ID: 35350441
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation.
    Mohd Asri MA; Nordin AN; Ramli N
    Biomicrofluidics; 2021 Dec; 15(6):061502. PubMed ID: 34777677
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Topographical Vacuum Sealing of 3D-Printed Multiplanar Microfluidic Structures.
    Heidt B; Rogosic R; Leoné N; Brás EJS; Cleij TJ; Harings JAW; Diliën H; Eersels K; van Grinsven B
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677351
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Flexible Enzymatic Glucose Electrochemical Sensor Based on Polystyrene-Gold Electrodes.
    Müsse A; La Malfa F; Brunetti V; Rizzi F; De Vittorio M
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357215
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Lung on a Chip Development from Off-Stoichiometry Thiol-Ene Polymer.
    Rimsa R; Galvanovskis A; Plume J; Rumnieks F; Grindulis K; Paidere G; Erentraute S; Mozolevskis G; Abols A
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34064627
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Knitting Thread Devices: Detecting
    Prabhu A; Singhal H; Giri Nandagopal MS; Kulal R; Peralam Yegneswaran P; Mani NK
    ACS Omega; 2021 May; 6(19):12667-12675. PubMed ID: 34056418
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Microfluidics for Peptidomics, Proteomics, and Cell Analysis.
    Vitorino R; Guedes S; Costa JPD; Kašička V
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925983
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Establishment of Colorectal Cancer Organoids in Microfluidic-Based System.
    Pinho D; Santos D; Vila A; Carvalho S
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33924829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.