These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30424400)

  • 21. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shear-dependent aggregation characteristics of red blood cells in a pressure-driven microfluidic channel.
    Shin S; Park MS; Ku YH; Suh JS
    Clin Hemorheol Microcirc; 2006; 34(1-2):353-61. PubMed ID: 16543657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro and ex vivo measurement of the biophysical properties of blood using microfluidic platforms and animal models.
    Kang YJ; Lee SJ
    Analyst; 2018 Jun; 143(12):2723-2749. PubMed ID: 29740642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of Blood Viscoelasticity under Microcapillary Blood Flow.
    Kang YJ
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic-Based Biosensor for Blood Viscosity and Erythrocyte Sedimentation Rate Using Disposable Fluid Delivery System.
    Kang YJ
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential quantification of blood and diluent using red cell sedimentation-based separation and pressure-induced work in a microfluidic channel.
    Kang YJ
    Anal Methods; 2022 Mar; 14(12):1194-1207. PubMed ID: 35234222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between velocity profile and ultrasound echogenicity in pulsatile blood flows.
    Yeom E; Lee SJ
    Clin Hemorheol Microcirc; 2015; 59(3):197-209. PubMed ID: 24002117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contributions of Red Blood Cell Sedimentation in a Driving Syringe to Blood Flow in Capillary Channels.
    Kang YJ
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optofluidic laser speckle image decorrelation analysis for the assessment of red blood cell storage.
    Jeon HJ; Qureshi MM; Lee SY; Chung E
    PLoS One; 2019; 14(10):e0224036. PubMed ID: 31639179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
    Ahmed F; Mehrabadi M; Liu Z; Barabino GA; Aidun CK
    J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29715334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A physiometer for simultaneous measurement of whole blood viscosity and its determinants: hematocrit and red blood cell deformability.
    Kim BJ; Lee YS; Zhbanov A; Yang S
    Analyst; 2019 Apr; 144(9):3144-3157. PubMed ID: 30942211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers.
    Armstrong JK; Meiselman HJ; Wenby RB; Fisher TC
    Biorheology; 2001; 38(2-3):239-47. PubMed ID: 11381178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased red blood cell deformability and decreased aggregation as potential adaptive mechanisms in the slow coronary flow phenomenon.
    Yaylali YT; Susam I; Demir E; Bor-Kucukatay M; Uludag B; Kilic-Toprak E; Erken G; Dursunoglu D
    Coron Artery Dis; 2013 Jan; 24(1):11-5. PubMed ID: 23111584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Higher Daily Physical Activity Level Is Associated with Lower RBC Aggregation in Carotid Artery Disease Patients at High Risk of Stroke.
    Mury P; Faes C; Millon A; Mura M; Renoux C; Skinner S; Nicaise V; Joly P; Della Schiava N; Lermusiaux P; Connes P; Pialoux V
    Front Physiol; 2017; 8():1043. PubMed ID: 29311973
    [No Abstract]   [Full Text] [Related]  

  • 36. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blood Viscoelasticity Measurement Using Interface Variations in Coflowing Streams under Pulsatile Blood Flows.
    Kang YJ
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32111057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic biosensor for monitoring temporal variations of hemorheological and hemodynamic properties using an extracorporeal rat bypass loop.
    Kang YJ; Yeom E; Lee SJ
    Anal Chem; 2013 Nov; 85(21):10503-11. PubMed ID: 24102170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous measurement method of erythrocyte sedimentation rate and erythrocyte deformability in resource-limited settings.
    Kang YJ
    Physiol Meas; 2020 Mar; 41(2):025009. PubMed ID: 32000147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.