These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30424430)

  • 1. Novel Preparation of Monodisperse Microbubbles by Integrating Oscillating Electric Fields with Microfluidics.
    Kothandaraman A; Harker A; Ventikos Y; Edirisinghe M
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the Mixing Region Geometry and Collector Distance on Microbubble Formation in a Microfluidic Device Coupled with ac-dc Electric Fields.
    Kothandaraman A; Alfadhl Y; Qureshi M; Edirisinghe M; Ventikos Y
    Langmuir; 2019 Aug; 35(31):10052-10060. PubMed ID: 30995839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing.
    Parhizkar M; Stride E; Edirisinghe M
    Lab Chip; 2014 Jul; 14(14):2437-46. PubMed ID: 24837066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropipette-Based Microfluidic Device for Monodisperse Microbubbles Generation.
    Toshiyuki Matsumi C; José da Silva W; Kurt Schneider F; Miguel Maia J; E M Morales R; Duarte Araújo Filho W
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA; Bouakaz A
    Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes.
    Salari A; Gnyawali V; Griffiths IM; Karshafian R; Kolios MC; Tsai SSH
    Soft Matter; 2017 Nov; 13(46):8796-8806. PubMed ID: 29135012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T-junction Microfluidic Device.
    Khan AH; Ganguli A; Edirisinghe M; Dalvi SV
    Langmuir; 2023 Dec; 39(51):18971-18982. PubMed ID: 38087401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Speed Generation of Microbubbles with Constant Cumulative Production in a Glass Capillary Microfluidic Bubble Generator.
    Yu J; Cheng W; Ni J; Li C; Su X; Yan H; Bao F; Hou L
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bubble Manipulation Driven by Alternating Current Electrowetting: Oscillation Modes and Surface Detachment.
    Sun Z; Zhuang L; Wei M; Sun H; Liu F; Tang B; Groenewold J; Zhou G
    Langmuir; 2021 Jun; 37(23):6898-6904. PubMed ID: 34060843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip microfluidic generation of monodisperse bubbles for liquid interfacial tension measurement.
    Wang C; Cao J; Zhou Y; Xia XH
    Talanta; 2018 Jan; 176():646-651. PubMed ID: 28917802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating Lifetime-Enhanced Microbubbles by Decorating Shells with Silicon Quantum Nano-Dots Using a 3-Series T-Junction Microfluidic Device.
    Wu B; Luo CJ; Palaniappan A; Jiang X; Gultekinoglu M; Ulubayram K; Bayram C; Harker A; Shirahata N; Khan AH; Dalvi SV; Edirisinghe M
    Langmuir; 2022 Sep; 38(36):10917-10933. PubMed ID: 36018789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired preparation of alginate nanoparticles using microbubble bursting.
    Elsayed M; Huang J; Edirisinghe M
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():132-9. PubMed ID: 25491969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of microbubbles for diagnostic and therapeutic applications using a novel device.
    Pancholi K; Stride E; Edirisinghe M
    J Drug Target; 2008 Jul; 16(6):494-501. PubMed ID: 18604662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations.
    Calero V; García-Sánchez P; Ramos A; Morgan H
    J Chromatogr A; 2020 Jul; 1623():461151. PubMed ID: 32505271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of a Nonconductive Droplet in an Aqueous Fluid with AC Electric Fields: Droplet Dewetting, Oscillation, and Detachment.
    Wang Q; Li L; Gu J; Zhang C; Lyu J; Yao W
    Langmuir; 2021 Oct; 37(41):12098-12111. PubMed ID: 34519514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-directional flow of ionic solutions along fine electrodes under an alternating current electric field.
    Shin JH; Kim K; Woo H; Kang IS; Kang HW; Choi W; Lim G
    R Soc Open Sci; 2019 Feb; 6(2):180657. PubMed ID: 30891253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-Shaped Microfluidic Junction Processing of Porous Alginate-Based Films and Their Characteristics.
    Mutlu B; Farhan M; Kucuk I
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31450763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.