BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 30424505)

  • 1. Effects of Royal Jelly Administration on Endurance Training-Induced Mitochondrial Adaptations in Skeletal Muscle.
    Takahashi Y; Hijikata K; Seike K; Nakano S; Banjo M; Sato Y; Takahashi K; Hatta H
    Nutrients; 2018 Nov; 10(11):. PubMed ID: 30424505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lactate administration on mitochondrial enzyme activity and monocarboxylate transporters in mouse skeletal muscle.
    Takahashi K; Kitaoka Y; Matsunaga Y; Hatta H
    Physiol Rep; 2019 Sep; 7(17):e14224. PubMed ID: 31512405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle.
    Tamura Y; Matsunaga Y; Masuda H; Takahashi Y; Takahashi Y; Terada S; Hoshino D; Hatta H
    Am J Physiol Regul Integr Comp Physiol; 2014 Oct; 307(7):R931-43. PubMed ID: 25080501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training in rat skeletal muscle.
    Terada S; Nakagawa H; Nakamura Y; Muraoka I
    Eur J Appl Physiol; 2003 Sep; 90(1-2):210-7. PubMed ID: 12856186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.
    Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ
    Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral Lactate Administration Additively Enhances Endurance Training-Induced Increase in Cytochrome C Oxidase Activity in Mouse Soleus Muscle.
    Takahashi K; Kitaoka Y; Yamamoto K; Matsunaga Y; Hatta H
    Nutrients; 2020 Mar; 12(3):. PubMed ID: 32183387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endurance performance is enhanced by intermittent hyperbaric exposure via up-regulation of proteins involved in mitochondrial biogenesis in mice.
    Suzuki J
    Physiol Rep; 2017 Aug; 5(15):. PubMed ID: 28778990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle metabolic adaptations to endurance exercise training are attainable in mice with simvastatin treatment.
    Southern WM; Nichenko AS; Shill DD; Spencer CC; Jenkins NT; McCully KK; Call JA
    PLoS One; 2017; 12(2):e0172551. PubMed ID: 28207880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
    Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K
    J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of apelin treatment on skeletal muscle mitochondrial content.
    Frier BC; Williams DB; Wright DC
    Am J Physiol Regul Integr Comp Physiol; 2009 Dec; 297(6):R1761-8. PubMed ID: 19793954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMPK-α2 is involved in exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following high-fat diet.
    Abbott MJ; Turcotte LP
    J Appl Physiol (1985); 2014 Oct; 117(8):869-79. PubMed ID: 25103967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation.
    Chang H; Kwon O; Shin MS; Kang GM; Leem YH; Lee CH; Kim SJ; Roh E; Kim HK; Youn BS; Kim MS
    J Appl Physiol (1985); 2018 Sep; 125(3):715-722. PubMed ID: 29952246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals.
    Vissing K; McGee S; Farup J; Kjølhede T; Vendelbo M; Jessen N
    Scand J Med Sci Sports; 2013 Jun; 23(3):355-66. PubMed ID: 23802289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of endurance training under calorie restriction on energy substrate metabolism in mouse skeletal muscle and liver.
    Takahashi K; Kitaoka Y; Hatta H
    J Physiol Sci; 2024 Jun; 74(1):32. PubMed ID: 38849720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels.
    Ray Hamidie RD; Yamada T; Ishizawa R; Saito Y; Masuda K
    Metabolism; 2015 Oct; 64(10):1334-47. PubMed ID: 26278015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice.
    Kristensen JM; Larsen S; Helge JW; Dela F; Wojtaszewski JF
    PLoS One; 2013; 8(1):e53533. PubMed ID: 23341947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation.
    Tomas E; Tsao TS; Saha AK; Murrey HE; Zhang Cc Cc; Itani SI; Lodish HF; Ruderman NB
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16309-13. PubMed ID: 12456889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.
    Yeo WK; Paton CD; Garnham AP; Burke LM; Carey AL; Hawley JA
    J Appl Physiol (1985); 2008 Nov; 105(5):1462-70. PubMed ID: 18772325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Quercetin Treatment on Mitochondrial Biogenesis and Exercise-Induced AMP-Activated Protein Kinase Activation in Rat Skeletal Muscle.
    Koshinaka K; Honda A; Masuda H; Sato A
    Nutrients; 2020 Mar; 12(3):. PubMed ID: 32164219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.