These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 30424512)
21. CARL: a running recognition algorithm for free-living accelerometer data. Davis JJ; Straczkiewicz M; Harezlak J; Gruber AH Physiol Meas; 2021 Dec; 42(11):. PubMed ID: 34883471 [TBL] [Abstract][Full Text] [Related]
22. The validity of the commercially-available, low-cost, wrist-worn Movband accelerometer during treadmill exercise and free-living physical activity. Barkley JE; Glickman E; Fennell C; Kobak M; Frank M; Farnell G J Sports Sci; 2019 Apr; 37(7):735-740. PubMed ID: 30238836 [TBL] [Abstract][Full Text] [Related]
23. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data. Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297 [TBL] [Abstract][Full Text] [Related]
24. Automatic Identification of Physical Activity Intensity and Modality from the Fusion of Accelerometry and Heart Rate Data. García-García F; Benito PJ; Hernando ME Methods Inf Med; 2016 Dec; 55(6):533-544. PubMed ID: 27492483 [TBL] [Abstract][Full Text] [Related]
25. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk. Kańtoch E Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249987 [TBL] [Abstract][Full Text] [Related]
26. Individual versus Group Calibration of Machine Learning Models for Physical Activity Assessment Using Body-Worn Accelerometers. Montoye AHK; Westgate BS; Clevenger KA; Pfeiffer KA; Vondrasek JD; Fonley MR; Bock JM; Kaminsky LA Med Sci Sports Exerc; 2021 Dec; 53(12):2691-2701. PubMed ID: 34310493 [TBL] [Abstract][Full Text] [Related]
27. Accelerometry-based classification of human activities using Markov modeling. Mannini A; Sabatini AM Comput Intell Neurosci; 2011; 2011():647858. PubMed ID: 21904542 [TBL] [Abstract][Full Text] [Related]
28. A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer. Qiao Wang ; Lohit S; Toledo MJ; Buman MP; Turaga P Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2631-2635. PubMed ID: 28268862 [TBL] [Abstract][Full Text] [Related]
29. Using hidden markov models to improve quantifying physical activity in accelerometer data - a simulation study. Witowski V; Foraita R; Pitsiladis Y; Pigeot I; Wirsik N PLoS One; 2014; 9(12):e114089. PubMed ID: 25464514 [TBL] [Abstract][Full Text] [Related]
30. Predicting children's energy expenditure during physical activity using deep learning and wearable sensor data. Hamid A; Duncan MJ; Eyre ELJ; Jing Y Eur J Sport Sci; 2021 Jun; 21(6):918-926. PubMed ID: 32597337 [TBL] [Abstract][Full Text] [Related]
31. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age. Strath SJ; Kate RJ; Keenan KG; Welch WA; Swartz AM Physiol Meas; 2015 Nov; 36(11):2335-51. PubMed ID: 26449155 [TBL] [Abstract][Full Text] [Related]
32. Are Machine Learning Models on Wrist Accelerometry Robust against Differences in Physical Performance among Older Adults? Bai C; Wanigatunga AA; Saldana S; Casanova R; Manini TM; Mardini MT Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459045 [TBL] [Abstract][Full Text] [Related]
33. Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data. Kate RJ; Swartz AM; Welch WA; Strath SJ Physiol Meas; 2016 Mar; 37(3):360-79. PubMed ID: 26862679 [TBL] [Abstract][Full Text] [Related]
34. The eMouveRecherche application competes with research devices to evaluate energy expenditure, physical activity and still time in free-living conditions. Guidoux R; Duclos M; Fleury G; Lacomme P; Lamaudière N; Saboul D; Ren L; Rousset S J Biomed Inform; 2017 May; 69():128-134. PubMed ID: 28400313 [TBL] [Abstract][Full Text] [Related]
36. Classification of team sport activities using a single wearable tracking device. Wundersitz DWT; Josman C; Gupta R; Netto KJ; Gastin PB; Robertson S J Biomech; 2015 Nov; 48(15):3975-3981. PubMed ID: 26472301 [TBL] [Abstract][Full Text] [Related]
37. Predicting physical functioning status in older adults: insights from wrist accelerometer sensors and derived digital biomarkers of physical activity. Fan L; Zhao J; Hu Y; Zhang J; Wang X; Wang F; Wu M; Lin T J Am Med Inform Assoc; 2024 Nov; 31(11):2571-2582. PubMed ID: 39178361 [TBL] [Abstract][Full Text] [Related]
38. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents. Scott JJ; Rowlands AV; Cliff DP; Morgan PJ; Plotnikoff RC; Lubans DR J Sci Med Sport; 2017 Dec; 20(12):1101-1106. PubMed ID: 28501418 [TBL] [Abstract][Full Text] [Related]
39. A Novel Wearable Device for Food Intake and Physical Activity Recognition. Farooq M; Sazonov E Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27409622 [TBL] [Abstract][Full Text] [Related]
40. Muscle Activation and Inertial Motion Data for Noninvasive Classification of Activities of Daily Living. Totty MS; Wade E IEEE Trans Biomed Eng; 2018 May; 65(5):1069-1076. PubMed ID: 28809669 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]