BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 30424535)

  • 1. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity.
    Liao C; Li Y; Tjong SC
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30424535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application.
    Syama S; Mohanan PV
    Int J Biol Macromol; 2016 May; 86():546-55. PubMed ID: 26851208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating oxidation state-induced toxicity of PEGylated graphene oxide in ocular tissue using gene expression profiles.
    Wu W; Yan L; Chen S; Li Q; Gu Z; Xu H; Yin ZQ
    Nanotoxicology; 2018 Oct; 12(8):819-835. PubMed ID: 29888639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene Family of Nanomaterials: Reviewing Advanced Applications in Drug delivery and Medicine.
    Joshi K; Mazumder B; Chattopadhyay P; Bora NS; Goyary D; Karmakar S
    Curr Drug Deliv; 2019; 16(3):195-214. PubMed ID: 30381073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicology of graphene-based nanomaterials.
    Lalwani G; D'Agati M; Khan AM; Sitharaman B
    Adv Drug Deliv Rev; 2016 Oct; 105(Pt B):109-144. PubMed ID: 27154267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological interactions of graphene-family nanomaterials: an interdisciplinary review.
    Sanchez VC; Jachak A; Hurt RH; Kane AB
    Chem Res Toxicol; 2012 Jan; 25(1):15-34. PubMed ID: 21954945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systems toxicology approach to the surface functionality control of graphene-cell interactions.
    Chatterjee N; Eom HJ; Choi J
    Biomaterials; 2014 Jan; 35(4):1109-27. PubMed ID: 24211078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Structure-Properties-Cytotoxicity Interplay: A Crucial Pathway to Determining Graphene Oxide Biocompatibility.
    Dziewięcka M; Pawlyta M; Majchrzycki Ł; Balin K; Barteczko S; Czerkawska M; Augustyniak M
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro toxicity evaluation of graphene oxide on A549 cells.
    Chang Y; Yang ST; Liu JH; Dong E; Wang Y; Cao A; Liu Y; Wang H
    Toxicol Lett; 2011 Feb; 200(3):201-10. PubMed ID: 21130147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro.
    Katsumiti A; Tomovska R; Cajaraville MP
    Aquat Toxicol; 2017 Jul; 188():138-147. PubMed ID: 28521151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of surface chemistry in the cytotoxicity profile of graphene.
    Majeed W; Bourdo S; Petibone DM; Saini V; Vang KB; Nima ZA; Alghazali KM; Darrigues E; Ghosh A; Watanabe F; Casciano D; Ali SF; Biris AS
    J Appl Toxicol; 2017 Apr; 37(4):462-470. PubMed ID: 27593524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review.
    Li J; Zeng H; Zeng Z; Zeng Y; Xie T
    ACS Biomater Sci Eng; 2021 Dec; 7(12):5363-5396. PubMed ID: 34747591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the toxic potential of graphene family nanomaterials.
    Guo X; Mei N
    J Food Drug Anal; 2014 Mar; 22(1):105-115. PubMed ID: 24673908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene and Graphene-Based Materials in Biomedical Applications.
    Ansari MO; Gauthaman K; Essa A; Bencherif SA; Memic A
    Curr Med Chem; 2019; 26(38):6834-6850. PubMed ID: 31284851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo.
    Jia PP; Sun T; Junaid M; Yang L; Ma YB; Cui ZS; Wei DP; Shi HF; Pei DS
    Environ Pollut; 2019 Apr; 247():595-606. PubMed ID: 30708322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene.
    Gurunathan S; Han JW; Park JH; Eppakayala V; Kim JH
    Int J Nanomedicine; 2014; 9():363-77. PubMed ID: 24453487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials.
    Gurunathan S; Kim JH
    Int J Nanomedicine; 2016; 11():1927-45. PubMed ID: 27226713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative in vitro study of single and four layer graphene oxide nanoflakes - Cytotoxicity and cellular uptake.
    Peruzynska M; Cendrowski K; Barylak M; Tkacz M; Piotrowska K; Kurzawski M; Mijowska E; Drozdzik M
    Toxicol In Vitro; 2017 Jun; 41():205-213. PubMed ID: 28323107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung.
    Duch MC; Budinger GR; Liang YT; Soberanes S; Urich D; Chiarella SE; Campochiaro LA; Gonzalez A; Chandel NS; Hersam MC; Mutlu GM
    Nano Lett; 2011 Dec; 11(12):5201-7. PubMed ID: 22023654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Accelerated Proliferation of Malignant Breast Cancer Cells on Planar Graphene Oxide Films.
    Kenry ; Chaudhuri PK; Loh KP; Lim CT
    ACS Nano; 2016 Mar; 10(3):3424-34. PubMed ID: 26919537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.