These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 30424554)
21. Strength Characteristics and Microstructure Analysis of Alkali-Activated Slag-Fly Ash Cementitious Material. Zhu C; Wan Y; Wang L; Ye Y; Yu H; Yang J Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079547 [TBL] [Abstract][Full Text] [Related]
22. Plastic shrinkage cracking and bleeding of concrete prepared with alkali activated cement. Matalkah F; Jaradat Y; Soroushian P Heliyon; 2019 Apr; 5(4):e01514. PubMed ID: 31025019 [TBL] [Abstract][Full Text] [Related]
23. Experimental Study on Cementless PET Mortar with Marble Powder and Iron Slag as an Aggregate. Khan SU; Rahim A; Md Yusoff NI; Khan AH; Tabassum S Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569974 [TBL] [Abstract][Full Text] [Related]
24. Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs). Lee D; Lee SC; Yoo SW Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850166 [TBL] [Abstract][Full Text] [Related]
25. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Huang X; Zhuang R; Muhammad F; Yu L; Shiau Y; Li D Chemosphere; 2017 Feb; 168():300-308. PubMed ID: 27810528 [TBL] [Abstract][Full Text] [Related]
26. Alteration in molecular structure of alkali activated slag with various water to binder ratios under accelerated carbonation. Nguyen TN; Phung QT; Yu Z; Frederickx L; Jacques D; Sakellariou D; Dauzeres A; Elsen J; Pontikes Y Sci Rep; 2022 Apr; 12(1):5524. PubMed ID: 35365734 [TBL] [Abstract][Full Text] [Related]
27. Characteristics of Preplaced Aggregate Concrete Fabricated with Alkali-Activated Slag/Fly Ash Cements. Siddique S; Kim H; Son H; Jang JG Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513951 [TBL] [Abstract][Full Text] [Related]
28. Strength Characteristics of Alkali-Activated Slag Mortars with the Addition of PET Flakes. Kocot A; Ćwirzeń A; Ponikiewski T; Katzer J Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771797 [TBL] [Abstract][Full Text] [Related]
29. Properties of Light Cementitious Composite Materials with Waste Wood Chips. Guo H; Wang P; Li Q; Liu G; Fan Q; Yue G; Song S; Zheng S; Wang L; Guo Y Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500165 [TBL] [Abstract][Full Text] [Related]
30. Effect of Municipal Solid Waste Slag on the Durability of Cementitious Composites in Terms of Resistance to Freeze-Thaw Cycling. Thomas M; Ślosarczyk A Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676364 [TBL] [Abstract][Full Text] [Related]
31. Characterisation of 20th Century Cementitious Materials from Selected Cultural Heritage Structures in Slovenia. Golež M; Serjun VZ; Štefančič M; Rant D; Dolenec S Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763484 [TBL] [Abstract][Full Text] [Related]
32. Leaching of monolithic and granular alkali activated slag-fly ash materials, as a function of the mixture design. Keulen A; van Zomeren A; Dijkstra JJ Waste Manag; 2018 Aug; 78():497-508. PubMed ID: 32559938 [TBL] [Abstract][Full Text] [Related]
33. Green Transforming Metallurgical Residue into Alkali-Activated Silicomanganese Slag-Based Cementitious Material as Photocatalyst. Zhang YJ; He PY; Chen H; Liu LC Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235796 [TBL] [Abstract][Full Text] [Related]
34. Corrosion Behavior of AISI 1018 Carbon Steel in Localized Repairs of Mortars with Alkaline Cements and Engineered Cementitious Composites. Maldonado-Bandala E; Higueredo-Moctezuma N; Nieves-Mendoza D; Gaona-Tiburcio C; Zambrano-Robledo P; Hernández-Martínez H; Almeraya-Calderón F Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32726900 [TBL] [Abstract][Full Text] [Related]
35. Macroscopic Properties and Pore Structure Fractal Characteristics of Alkali-Activated Metakaolin-Slag Composite Cementitious Materials. Zhan J; Fu B; Cheng Z Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501613 [TBL] [Abstract][Full Text] [Related]
36. Investigating Mechanical Properties of Alkali-Activated Slag Cementitious Material for Load-Bearing Layer of Sandwich Panels. Zhu J; Qu Z; Huang Y; Song L; Liu S; Min H; Li Z Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834534 [TBL] [Abstract][Full Text] [Related]
37. Steel Slag Accelerated Carbonation Curing for High-Carbonation Precast Concrete Development. Li W; Wang H; Liu Z; Li N; Zhao S; Hu S Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930337 [TBL] [Abstract][Full Text] [Related]
38. Assessment of Rational Design of Self-Compacting Concrete Incorporating Fly Ash and Limestone Powder in Terms of Long-Term Durability. Reiterman P; Jaskulski R; Kubissa W; Holčapek O; Keppert M Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604731 [TBL] [Abstract][Full Text] [Related]
39. Chloride Ions' Penetration of Fly Ash and Ground Granulated Blast Furnace Slags-Based Alkali-Activated Mortars. Duży P; Sitarz M; Adamczyk M; Choińska M; Hager I Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772108 [TBL] [Abstract][Full Text] [Related]
40. The Effect of Fibrous Reinforcement on the Polycondensation Degree of Slag-Based Alkali Activated Composites. Lancellotti I; Piccolo F; Nguyen H; Mastali M; Alzeer M; Illikainen M; Leonelli C Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451204 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]