These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30424642)

  • 1. Analytical coupled vibro-acoustic modeling of a cavity-backed duct-membrane system with uniform mean flow.
    Liu Y; Du J; Cheng L
    J Acoust Soc Am; 2018 Sep; 144(3):1368. PubMed ID: 30424642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibro-acoustic analysis of a rectangular cavity bounded by a flexible panel with elastically restrained edges.
    Du JT; Li WL; Xu HA; Liu ZG
    J Acoust Soc Am; 2012 Apr; 131(4):2799-810. PubMed ID: 22501058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavenumber domain analyses of vibro-acoustic decoupling and noise attenuation in a plate-cavity system enclosed by an acoustic black hole plate.
    Wang X; Ji H; Qiu J; Cheng L
    J Acoust Soc Am; 2019 Jul; 146(1):72. PubMed ID: 31370583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane covered duct lining for high-frequency noise attenuation: prediction using a Chebyshev collocation method.
    Huang L
    J Acoust Soc Am; 2008 Nov; 124(5):2918-29. PubMed ID: 19045780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vortex sound radiation in a flow duct with a dipole source and a flexible wall of finite length.
    Chiang YK; Choy YS; Tang SK
    J Acoust Soc Am; 2017 Mar; 141(3):1999. PubMed ID: 28372134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic analysis of a rectangular cavity with general impedance boundary conditions.
    Du JT; Li WL; Liu ZG; Xu HA; Ji ZL
    J Acoust Soc Am; 2011 Aug; 130(2):807-17. PubMed ID: 21877796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation modes and sound radiation from a flexible structure mounted in a duct.
    Liu Y; Du J; Cheng L
    J Acoust Soc Am; 2020 May; 147(5):3465. PubMed ID: 32486823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.
    Halim D; Cheng L; Su Z
    J Acoust Soc Am; 2011 Apr; 129(4):1991-2004. PubMed ID: 21476655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of micro-perforated panels in a complex vibro-acoustic environment using patch transfer function approach.
    Maxit L; Yang C; Cheng L; Guyader JL
    J Acoust Soc Am; 2012 Mar; 131(3):2118-30. PubMed ID: 22423708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortex sound due to a flexible boundary backed by a cavity in a low mach number mean flow.
    Tang SK; Leung RC; So RM
    J Acoust Soc Am; 2007 Mar; 121(3):1345-52. PubMed ID: 17407870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global feedforward active noise control in vibro-acoustic cavities without increasing structural vibrations.
    Puri A; Modak SV; Gupta K
    J Acoust Soc Am; 2018 Dec; 144(6):3391. PubMed ID: 30599654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow sound in lined flow ducts.
    Aurégan Y; Pagneux V
    J Acoust Soc Am; 2015 Aug; 138(2):605-13. PubMed ID: 26328679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergence criteria on the acoustic velocity continuity in a panel-cavity system.
    Hu Z; Maxit L; Cheng L
    J Acoust Soc Am; 2017 Mar; 141(3):2137. PubMed ID: 28372050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On Dowell's simplification for acoustic cavity-structure interaction and consistent alternatives.
    Ginsberg JH
    J Acoust Soc Am; 2010 Jan; 127(1):22-32. PubMed ID: 20058947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability analysis and design of time-domain acoustic impedance boundary conditions for lined duct with mean flow.
    Liu X; Huang X; Zhang X
    J Acoust Soc Am; 2014 Nov; 136(5):2441-52. PubMed ID: 25373946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The attenuation of the higher-order cross-section modes in a duct with a thin porous layer.
    Yin Y; Horoshenkov KV
    J Acoust Soc Am; 2005 Feb; 117(2):528-35. PubMed ID: 15759674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators.
    Estève SJ; Johnson ME
    J Acoust Soc Am; 2002 Dec; 112(6):2840-8. PubMed ID: 12509005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling vibro-acoustic response of lightweight square aluminium panel influenced by sound source locations for active control.
    Isaac CW; Wrona S; Pawelczyk M; Karimi HR
    Sci Rep; 2022 Jun; 12(1):10727. PubMed ID: 35750720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical analysis of aeroacoustic-structural interaction of a flexible panel in uniform duct flow.
    Fan HK; Leung RC; Lam GC
    J Acoust Soc Am; 2015 Jun; 137(6):3115-26. PubMed ID: 26093403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational approach for flow-acoustic coupling in closed side branches.
    Radavich PM; Selamet A; Novak JM
    J Acoust Soc Am; 2001 Apr; 109(4):1343-53. PubMed ID: 11325106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.