These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30424811)

  • 1. The impact of thigh and shank marker quantity on lower extremity kinematics using a constrained model.
    Slater AA; Hullfish TJ; Baxter JR
    BMC Musculoskelet Disord; 2018 Nov; 19(1):399. PubMed ID: 30424811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex differences in pelvis, thigh, and shank coordination during walking.
    Konishi R; Ozawa J; Kuniki M; Yamagiwa D; Kito N
    J Biomech; 2024 Jan; 162():111891. PubMed ID: 38147810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inclusion of a skeletal model partly improves the reliability of lower limb joint angles derived from a markerless depth camera.
    Collings TJ; Devaprakash D; Pizzolato C; Lloyd DG; Barrett RS; Lenton GK; Thomeer LT; Bourne MN
    J Biomech; 2024 Jun; 170():112160. PubMed ID: 38824704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How reliable are femoropelvic kinematics during deep squats? The influence of subject-specific skeletal modelling on measurement variability.
    Otti DA; Ghijselings S; Staes F; Scheys L
    Gait Posture; 2024 Jul; 112():120-127. PubMed ID: 38761585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-Segment Coordination of Male and Female Collegiate Ice Hockey Players During Forward Skating Starts.
    Mazurek CM; Pearsall DJ; Renaud PJ; Robbins SM
    Res Q Exerc Sport; 2024 May; ():1-9. PubMed ID: 38776467
    [No Abstract]   [Full Text] [Related]  

  • 6. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.
    d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N
    J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using markerless motion capture and musculoskeletal models: An evaluation of joint kinematics.
    Auer S; Süß F; Dendorfer S
    Technol Health Care; 2024 Jun; ():. PubMed ID: 38905067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marker Set Configuration and Rigid Body Attitude Determination.
    Challis JH
    J Biomech Eng; 2023 Dec; 145(12):. PubMed ID: 37792499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AGREEMENT OF HIP KINEMATICS BETWEEN TWO TRACKING MARKER CONFIGURATIONS USED WITH THE CODA PELVIS DURING ERGONOMIC ROOFING TASKS.
    Moore KD; Hawke AL; Carey RE; Wu JZ; Breloff SP
    J Mech Med Biol; 2023 Jan; 23(3):. PubMed ID: 37361026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrepancy between 'contributing to' and 'sharing variance with' the effective energy for height in high jump.
    Sado N; Fujimori T; Tobe N
    J Sports Sci; 2024 Mar; 42(5):425-433. PubMed ID: 38545865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A leg model based on anatomical landmarks to study 3D joint kinematics of walking in
    Haustein M; Blanke A; Bockemühl T; Büschges A
    Front Bioeng Biotechnol; 2024; 12():1357598. PubMed ID: 38988867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of skeletal movement using skin markers: comparative assessment of bone pose estimators.
    Cereatti A; Della Croce U; Cappozzo A
    J Neuroeng Rehabil; 2006 Mar; 3():7. PubMed ID: 16556302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of minimum segment models for the estimation of centre of mass position and velocity for slip recovery during a bathtub transfer task.
    Collins M; Levine IC; Gosine PC; Montgomery RE; Nirmalanathan K; Novak AC
    Gait Posture; 2024 Mar; 109():153-157. PubMed ID: 38309126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of occluded pelvis markers during marker-based motion capture with industrial exoskeletons.
    Johns J; Bender A; Glitsch U; Schmidt-Bleek L; Dymke J; Brandl C; Damm P; Heinrich K
    Comput Methods Biomech Biomed Engin; 2024 May; ():1-11. PubMed ID: 38756020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance-based biomechanical method for robust inverse kinematics from noisy data.
    Bahdasariants S; Yough MG; Gritsenko V
    IEEE Sens Lett; 2024 Jun; 8(6):. PubMed ID: 38756421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.
    Frick E; Rahmatalla S
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29617331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greater trochanter location measurement using a three-dimensional motion capture system during prone hip extension.
    Yu JS; Oh JS
    J Phys Ther Sci; 2017 Feb; 29(2):250-254. PubMed ID: 28265151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuum Growth Mechanics: Reconciling Two Common Frameworks.
    Ateshian GA; LaBelle SA; Weiss JA
    J Biomech Eng; 2024 Oct; 146(10):. PubMed ID: 38607565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test Yourself: Chronic thigh pain and swelling.
    Desai S; Goyal D; Gaitonde A; Osan P; Joshi S
    Skeletal Radiol; 2024 Apr; 53(4):801-804. PubMed ID: 37831149
    [No Abstract]   [Full Text] [Related]  

  • 20. Painful proximal thigh mass.
    Zampa V; Aringhieri G; Fanni SC; Franchi A
    Skeletal Radiol; 2024 May; 53(5):979-981. PubMed ID: 37938358
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.