BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

680 related articles for article (PubMed ID: 30424953)

  • 21. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease.
    Park SH; Lee CM; Dever DP; Davis TH; Camarena J; Srifa W; Zhang Y; Paikari A; Chang AK; Porteus MH; Sheehan VA; Bao G
    Nucleic Acids Res; 2019 Sep; 47(15):7955-7972. PubMed ID: 31147717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Therapeutic base editing of human hematopoietic stem cells.
    Zeng J; Wu Y; Ren C; Bonanno J; Shen AH; Shea D; Gehrke JM; Clement K; Luk K; Yao Q; Kim R; Wolfe SA; Manis JP; Pinello L; Joung JK; Bauer DE
    Nat Med; 2020 Apr; 26(4):535-541. PubMed ID: 32284612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PLGA-Nanoparticles for Intracellular Delivery of the CRISPR-Complex to Elevate Fetal Globin Expression in Erythroid Cells.
    Cruz LJ; van Dijk T; Vepris O; Li TMWY; Schomann T; Baldazzi F; Kurita R; Nakamura Y; Grosveld F; Philipsen S; Eich C
    Biomaterials; 2021 Jan; 268():120580. PubMed ID: 33321292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Editing outside the body: Ex vivo gene-modification for β-hemoglobinopathy cellular therapy.
    Rosanwo TO; Bauer DE
    Mol Ther; 2021 Nov; 29(11):3163-3178. PubMed ID: 34628053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-deep sequencing validates safety of CRISPR/Cas9 genome editing in human hematopoietic stem and progenitor cells.
    Cromer MK; Barsan VV; Jaeger E; Wang M; Hampton JP; Chen F; Kennedy D; Xiao J; Khrebtukova I; Granat A; Truong T; Porteus MH
    Nat Commun; 2022 Aug; 13(1):4724. PubMed ID: 35953477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome editing via delivery of Cas9 ribonucleoprotein.
    DeWitt MA; Corn JE; Carroll D
    Methods; 2017 May; 121-122():9-15. PubMed ID: 28410976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease.
    Ramadier S; Chalumeau A; Felix T; Othman N; Aknoun S; Casini A; Maule G; Masson C; De Cian A; Frati G; Brusson M; Concordet JP; Cavazzana M; Cereseto A; El Nemer W; Amendola M; Wattellier B; Meneghini V; Miccio A
    Mol Ther; 2022 Jan; 30(1):145-163. PubMed ID: 34418541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated Good Manufacturing Practice-Compatible CRISPR-Cas9 Editing of Hematopoietic Stem and Progenitor Cells for Clinical Treatment of β-Hemoglobinopathies.
    Ureña-Bailén G; Block M; Grandi T; Aivazidou F; Quednau J; Krenz D; Daniel-Moreno A; Lamsfus-Calle A; Epting T; Handgretinger R; Wild S; Mezger M
    CRISPR J; 2023 Feb; 6(1):5-16. PubMed ID: 36662546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Universal Gene Correction Approaches for β-hemoglobinopathies Using CRISPR-Cas9 and Adeno-Associated Virus Serotype 6 Donor Templates.
    Lamsfus-Calle A; Daniel-Moreno A; Ureña-Bailén G; Rottenberger J; Raju J; Epting T; Marciano S; Heumos L; Baskaran P; S Antony J; Handgretinger R; Mezger M
    CRISPR J; 2021 Apr; 4(2):207-222. PubMed ID: 33876951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and Validation of CRISPR/Cas9 Off-Target Activity in Hematopoietic Stem and Progenitor Cells.
    Park SH; Lee CM; Bao G
    Methods Mol Biol; 2022; 2429():281-306. PubMed ID: 35507169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing.
    Li C; Psatha N; Sova P; Gil S; Wang H; Kim J; Kulkarni C; Valensisi C; Hawkins RD; Stamatoyannopoulos G; Lieber A
    Blood; 2018 Jun; 131(26):2915-2928. PubMed ID: 29789357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Base editing of haematopoietic stem cells rescues sickle cell disease in mice.
    Newby GA; Yen JS; Woodard KJ; Mayuranathan T; Lazzarotto CR; Li Y; Sheppard-Tillman H; Porter SN; Yao Y; Mayberry K; Everette KA; Jang Y; Podracky CJ; Thaman E; Lechauve C; Sharma A; Henderson JM; Richter MF; Zhao KT; Miller SM; Wang T; Koblan LW; McCaffrey AP; Tisdale JF; Kalfa TA; Pruett-Miller SM; Tsai SQ; Weiss MJ; Liu DR
    Nature; 2021 Jul; 595(7866):295-302. PubMed ID: 34079130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.
    Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X
    Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells.
    Yudovich D; Bäckström A; Schmiderer L; Žemaitis K; Subramaniam A; Larsson J
    Sci Rep; 2020 Dec; 10(1):22393. PubMed ID: 33372184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9.
    Gundry MC; Brunetti L; Lin A; Mayle AE; Kitano A; Wagner D; Hsu JI; Hoegenauer KA; Rooney CM; Goodell MA; Nakada D
    Cell Rep; 2016 Oct; 17(5):1453-1461. PubMed ID: 27783956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
    Frangoul H; Altshuler D; Cappellini MD; Chen YS; Domm J; Eustace BK; Foell J; de la Fuente J; Grupp S; Handgretinger R; Ho TW; Kattamis A; Kernytsky A; Lekstrom-Himes J; Li AM; Locatelli F; Mapara MY; de Montalembert M; Rondelli D; Sharma A; Sheth S; Soni S; Steinberg MH; Wall D; Yen A; Corbacioglu S
    N Engl J Med; 2021 Jan; 384(3):252-260. PubMed ID: 33283989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells.
    Liu W; Rudis MR; Cheplick MH; Millwood RJ; Yang JP; Ondzighi-Assoume CA; Montgomery GA; Burris KP; Mazarei M; Chesnut JD; Stewart CN
    Plant Cell Rep; 2020 Feb; 39(2):245-257. PubMed ID: 31728703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing.
    Wen J; Tao W; Hao S; Zu Y
    J Hematol Oncol; 2017 Jun; 10(1):119. PubMed ID: 28610635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells.
    Vakulskas CA; Dever DP; Rettig GR; Turk R; Jacobi AM; Collingwood MA; Bode NM; McNeill MS; Yan S; Camarena J; Lee CM; Park SH; Wiebking V; Bak RO; Gomez-Ospina N; Pavel-Dinu M; Sun W; Bao G; Porteus MH; Behlke MA
    Nat Med; 2018 Aug; 24(8):1216-1224. PubMed ID: 30082871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescent labeling of CRISPR/Cas9 RNP for gene knockout in HSPCs and iPSCs reveals an essential role for GADD45b in stress response.
    Nasri M; Mir P; Dannenmann B; Amend D; Skroblyn T; Xu Y; Schulze-Osthoff K; Klimiankou M; Welte K; Skokowa J
    Blood Adv; 2019 Jan; 3(1):63-71. PubMed ID: 30622144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.