BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30425151)

  • 41. Signal transduction cascades regulating mating, filamentation, and virulence in Cryptococcus neoformans.
    Wang P; Heitman J
    Curr Opin Microbiol; 1999 Aug; 2(4):358-62. PubMed ID: 10458985
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Single Protein S-acyl Transferase Acts through Diverse Substrates to Determine Cryptococcal Morphology, Stress Tolerance, and Pathogenic Outcome.
    Santiago-Tirado FH; Peng T; Yang M; Hang HC; Doering TL
    PLoS Pathog; 2015 May; 11(5):e1004908. PubMed ID: 25970403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A screening for suppressor mutants reveals components involved in the blue light-inhibited sexual filamentation in Cryptococcus neoformans.
    Yeh YL; Lin YS; Su BJ; Shen WC
    Fungal Genet Biol; 2009 Jan; 46(1):42-54. PubMed ID: 18996495
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Skn7 response regulator of Cryptococcus neoformans is involved in oxidative stress signalling and augments intracellular survival in endothelium.
    Coenjaerts FE; Hoepelman AI; Scharringa J; Aarts M; Ellerbroek PM; Bevaart L; Van Strijp JA; Janbon G
    FEMS Yeast Res; 2006 Jun; 6(4):652-61. PubMed ID: 16696662
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans.
    Feretzaki M; Heitman J
    PLoS Genet; 2013; 9(8):e1003688. PubMed ID: 23966871
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ras1 controls pheromone expression and response during mating in Cryptococcus neoformans.
    Waugh MS; Vallim MA; Heitman J; Alspaugh JA
    Fungal Genet Biol; 2003 Feb; 38(1):110-21. PubMed ID: 12553941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of virulence factors, carbon utilization and virulence by SNF1 in Cryptococcus neoformans JEC21 and divergent actions of SNF1 between cryptococcal strains.
    Yang J; Li D; Liu X; Pan J; Yan B; Zhu X
    Fungal Genet Biol; 2010 Dec; 47(12):994-1000. PubMed ID: 20719250
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The RAM signaling pathway links morphology, thermotolerance, and CO
    Chadwick BJ; Pham T; Xie X; Ristow LC; Krysan DJ; Lin X
    Elife; 2022 Nov; 11():. PubMed ID: 36416414
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pheromone independent unisexual development in Cryptococcus neoformans.
    Gyawali R; Zhao Y; Lin J; Fan Y; Xu X; Upadhyay S; Lin X
    PLoS Genet; 2017 May; 13(5):e1006772. PubMed ID: 28467481
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Histone deacetylase-mediated morphological transition in Candida albicans.
    Kim J; Lee JE; Lee JS
    J Microbiol; 2015 Dec; 53(12):805-11. PubMed ID: 26626350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals.
    Mylonakis E; Idnurm A; Moreno R; El Khoury J; Rottman JB; Ausubel FM; Heitman J; Calderwood SB
    Mol Microbiol; 2004 Oct; 54(2):407-19. PubMed ID: 15469513
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fungal adhesion protein guides community behaviors and autoinduction in a paracrine manner.
    Wang L; Tian X; Gyawali R; Lin X
    Proc Natl Acad Sci U S A; 2013 Jul; 110(28):11571-6. PubMed ID: 23798436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Negative control of Candida albicans filamentation-associated gene expression by essential protein kinase gene KIN28.
    Woolford CA; Lagree K; Aleynikov T; Mitchell AP
    Curr Genet; 2017 Dec; 63(6):1073-1079. PubMed ID: 28501989
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chlamydospore formation during hyphal growth in Cryptococcus neoformans.
    Lin X; Heitman J
    Eukaryot Cell; 2005 Oct; 4(10):1746-54. PubMed ID: 16215181
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-wide analysis of the regulation of Cu metabolism in Cryptococcus neoformans.
    Garcia-Santamarina S; Festa RA; Smith AD; Yu CH; Probst C; Ding C; Homer CM; Yin J; Noonan JP; Madhani H; Perfect JR; Thiele DJ
    Mol Microbiol; 2018 Jun; 108(5):473-494. PubMed ID: 29608794
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in Cryptococcus neoformans.
    Lee H; Khanal Lamichhane A; Garraffo HM; Kwon-Chung KJ; Chang YC
    Mol Microbiol; 2012 Apr; 84(1):130-46. PubMed ID: 22339665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cryptococcus neoformans: morphogenesis, infection, and evolution.
    Lin X
    Infect Genet Evol; 2009 Jul; 9(4):401-16. PubMed ID: 19460306
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ras1 acts through duplicated Cdc42 and Rac proteins to regulate morphogenesis and pathogenesis in the human fungal pathogen Cryptococcus neoformans.
    Ballou ER; Kozubowski L; Nichols CB; Alspaugh JA
    PLoS Genet; 2013; 9(8):e1003687. PubMed ID: 23950731
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cryptococcus neoformans: a sugar-coated killer with designer genes.
    Perfect JR
    FEMS Immunol Med Microbiol; 2005 Sep; 45(3):395-404. PubMed ID: 16055314
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATalpha allele enhances filamentation.
    Lin X; Huang JC; Mitchell TG; Heitman J
    PLoS Genet; 2006 Nov; 2(11):e187. PubMed ID: 17112316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.