These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30425151)

  • 61. Insertional mutagenesis combined with an inducible filamentation phenotype reveals a conserved STE50 homologue in Cryptococcus neoformans that is required for monokaryotic fruiting and sexual reproduction.
    Fu J; Mares C; Lizcano A; Liu Y; Wickes BL
    Mol Microbiol; 2011 Feb; 79(4):990-1007. PubMed ID: 21299652
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transcription factor-driven alternative localization of Cryptococcus neoformans superoxide dismutase.
    Smith AD; Garcia-Santamarina S; Ralle M; Loiselle DR; Haystead TA; Thiele DJ
    J Biol Chem; 2021; 296():100391. PubMed ID: 33567338
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cryptococcus neoformans Cda1 and Its Chitin Deacetylase Activity Are Required for Fungal Pathogenesis.
    Upadhya R; Baker LG; Lam WC; Specht CA; Donlin MJ; Lodge JK
    mBio; 2018 Nov; 9(6):. PubMed ID: 30459196
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The novel microtubule-associated CAP-glycine protein Cgp1 governs growth, differentiation, and virulence of Cryptococcus neoformans.
    Wang LL; Lee KT; Jung KW; Lee DG; Bahn YS
    Virulence; 2018 Jan; 9(1):566-584. PubMed ID: 29338542
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans.
    Kmetzsch L; Staats CC; Simon E; Fonseca FL; Oliveira DL; Joffe LS; Rodrigues J; Lourenço RF; Gomes SL; Nimrichter L; Rodrigues ML; Schrank A; Vainstein MH
    Fungal Genet Biol; 2011 Feb; 48(2):192-9. PubMed ID: 20673806
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion.
    Tenor JL; Oehlers SH; Yang JL; Tobin DM; Perfect JR
    mBio; 2015 Sep; 6(5):e01425-15. PubMed ID: 26419880
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Life Cycle of
    Zhao Y; Lin J; Fan Y; Lin X
    Annu Rev Microbiol; 2019 Sep; 73():17-42. PubMed ID: 31082304
    [No Abstract]   [Full Text] [Related]  

  • 68. A Ras1-Cdc24 signal transduction pathway mediates thermotolerance in the fungal pathogen Cryptococcus neoformans.
    Nichols CB; Perfect ZH; Alspaugh JA
    Mol Microbiol; 2007 Feb; 63(4):1118-30. PubMed ID: 17233829
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Maintenance of Mitochondrial Morphology in Cryptococcus neoformans Is Critical for Stress Resistance and Virulence.
    Chang AL; Doering TL
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401774
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The F-Box Protein Fbp1 Shapes the Immunogenic Potential of
    Masso-Silva J; Espinosa V; Liu TB; Wang Y; Xue C; Rivera A
    mBio; 2018 Jan; 9(1):. PubMed ID: 29317510
    [No Abstract]   [Full Text] [Related]  

  • 71. Matricellular protein Cfl1 regulates cell differentiation.
    Tian X; Lin X
    Commun Integr Biol; 2013 Nov; 6(6):e26444. PubMed ID: 24567775
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deletion of a small, secreted and cysteine-rich protein Cpl1 leads to increased invasive growth of Cryptococcus neoformans into nutrient agar.
    Sun P; Li X; Yang M; Zhao X; Zhang Z; Wei D
    Microbiol Res; 2020 Dec; 241():126570. PubMed ID: 32805526
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The contribution of the White Collar complex to Cryptococcus neoformans virulence is independent of its light-sensing capabilities.
    Zhu P; Idnurm A
    Fungal Genet Biol; 2018 Dec; 121():56-64. PubMed ID: 30266690
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans.
    Kelliher CM; Haase SB
    Curr Genet; 2017 Oct; 63(5):803-811. PubMed ID: 28265742
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The calcium transporter Pmc1 provides Ca2+ tolerance and influences the progression of murine cryptococcal infection.
    Kmetzsch L; Staats CC; Cupertino JB; Fonseca FL; Rodrigues ML; Schrank A; Vainstein MH
    FEBS J; 2013 Oct; 280(19):4853-64. PubMed ID: 23895559
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The C2 domain protein Cts1 functions in the calcineurin signaling circuit during high-temperature stress responses in Cryptococcus neoformans.
    Aboobakar EF; Wang X; Heitman J; Kozubowski L
    Eukaryot Cell; 2011 Dec; 10(12):1714-23. PubMed ID: 22002655
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A unique cell wall synthetic response evoked by glucosamine determines pathogenicity-associated fungal cellular differentiation.
    Hu P; Ding H; Shen L; He GJ; Liu H; Tian X; Tao C; Bai X; Liang J; Jin C; Xu X; Yang E; Wang L
    PLoS Genet; 2021 Oct; 17(10):e1009817. PubMed ID: 34624015
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterizing the role of the microtubule binding protein Bim1 in Cryptococcus neoformans.
    Staudt MW; Kruzel EK; Shimizu K; Hull CM
    Fungal Genet Biol; 2010 Apr; 47(4):310-7. PubMed ID: 20044015
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular mechanisms of hypoxic responses via unique roles of Ras1, Cdc24 and Ptp3 in a human fungal pathogen Cryptococcus neoformans.
    Chang YC; Khanal Lamichhane A; Garraffo HM; Walter PJ; Leerkes M; Kwon-Chung KJ
    PLoS Genet; 2014 Apr; 10(4):e1004292. PubMed ID: 24762475
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli.
    Okagaki LH; Wang Y; Ballou ER; O'Meara TR; Bahn YS; Alspaugh JA; Xue C; Nielsen K
    Eukaryot Cell; 2011 Oct; 10(10):1306-16. PubMed ID: 21821718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.