These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 30425317)
1. Real-time particle monitoring of pesticide drift from an axial fan airblast orchard sprayer. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E J Expo Sci Environ Epidemiol; 2019 Apr; 29(3):397-405. PubMed ID: 30425317 [TBL] [Abstract][Full Text] [Related]
2. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400 [TBL] [Abstract][Full Text] [Related]
3. Spray Drift from a Conventional Axial Fan Airblast Sprayer in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2018 Nov; 62(9):1134-1146. PubMed ID: 30346469 [TBL] [Abstract][Full Text] [Related]
4. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605 [TBL] [Abstract][Full Text] [Related]
5. Primary and secondary pesticide drift profiles from a peach orchard. Zivan O; Bohbot-Raviv Y; Dubowski Y Chemosphere; 2017 Jun; 177():303-310. PubMed ID: 28314235 [TBL] [Abstract][Full Text] [Related]
6. Examining the role of wind in human illness due to pesticide drift in Washington state, 2000-2015. Kasner EJ; Prado JB; Yost MG; Fenske RA Environ Health; 2021 Mar; 20(1):26. PubMed ID: 33722241 [TBL] [Abstract][Full Text] [Related]
7. Spray drift as affected by meteorological conditions. Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942 [TBL] [Abstract][Full Text] [Related]
8. Characterization of field-scale spray drift deposition and non-target plant biological sensitivity: a corn herbicide (mesotrione/s-metolochlor) case study. Perkins DB; Abi-Akar F; Goodwin G; Brain RA Pest Manag Sci; 2022 Jul; 78(7):3193-3206. PubMed ID: 35488378 [TBL] [Abstract][Full Text] [Related]
10. Testing flow-through air samplers for use in near-field vapour drift studies by measuring pyrimethanil in air after spraying. Geoghegan TS; Hageman KJ; Hewitt AJ Environ Sci Process Impacts; 2014 Mar; 16(3):422-32. PubMed ID: 24365971 [TBL] [Abstract][Full Text] [Related]
11. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
12. Environmental, bystander and resident exposure from orchard applications using an agricultural unmanned aerial spraying system. Dubuis PH; Droz M; Melgar A; Zürcher UA; Zarn JA; Gindro K; König SLB Sci Total Environ; 2023 Jul; 881():163371. PubMed ID: 37044339 [TBL] [Abstract][Full Text] [Related]
13. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer. Bayat A; İtmeç M; Özlüoymak ÖB Pest Manag Sci; 2023 Nov; 79(11):4439-4450. PubMed ID: 37405577 [TBL] [Abstract][Full Text] [Related]
14. Impact of Wind Speed and Direction and Key Meteorological Parameters on Potential Pesticide Drift Mass Loadings from Sequential Aerial Applications. Desmarteau DA; Ritter AM; Hendley P; Guevara MW Integr Environ Assess Manag; 2020 Mar; 16(2):197-210. PubMed ID: 31589364 [TBL] [Abstract][Full Text] [Related]
15. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. de Snoo GR; de Wit PJ Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699 [TBL] [Abstract][Full Text] [Related]
16. Comparison of different sampling techniques for the evaluation of pesticide spray drift in apple orchards. Briand O; Bertrand F; Seux R; Millet M Sci Total Environ; 2002 Apr; 288(3):199-213. PubMed ID: 11991524 [TBL] [Abstract][Full Text] [Related]
17. Toward a new method to classify the airblast sprayers according to their potential drift reduction: comparison of direct and new indirect measurement methods. Grella M; Marucco P; Balsari P Pest Manag Sci; 2019 Aug; 75(8):2219-2235. PubMed ID: 30680860 [TBL] [Abstract][Full Text] [Related]
19. Direct and indirect drift assessment means. Part 4: a comparative study. Nuyttens D; Baetens K; De Schampheleire M; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of spray drift for different crop types: cereal, cereal stubble and grassland. De Schampheleire M; Nuyttens D; Dekeyser D; Verboven P; Spanoghe P Commun Agric Appl Biol Sci; 2008; 73(4):743-7. PubMed ID: 19226823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]