These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 30425486)
1. Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation. Dhupal M; Oh JM; Tripathy DR; Kim SK; Koh SB; Park KS Int J Nanomedicine; 2018; 13():6735-6750. PubMed ID: 30425486 [TBL] [Abstract][Full Text] [Related]
2. Titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and p38, PI3K/Akt, NF-κB signaling pathways modulation. Gholinejad Z; Khadem Ansari MH; Rasmi Y J Trace Elem Med Biol; 2019 Jul; 54():27-35. PubMed ID: 31109618 [TBL] [Abstract][Full Text] [Related]
3. ROS generation is involved in titanium dioxide nanoparticle-induced AP-1 activation through p38 MAPK and ERK pathways in JB6 cells. Kong L; Barber T; Aldinger J; Bowman L; Leonard S; Zhao J; Ding M Environ Toxicol; 2022 Feb; 37(2):237-244. PubMed ID: 34730869 [TBL] [Abstract][Full Text] [Related]
4. Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice. Ze Y; Zheng L; Zhao X; Gui S; Sang X; Su J; Guan N; Zhu L; Sheng L; Hu R; Cheng J; Cheng Z; Sun Q; Wang L; Hong F Chemosphere; 2013 Aug; 92(9):1183-9. PubMed ID: 23466083 [TBL] [Abstract][Full Text] [Related]
5. Molecular mechanism of DNA damage induced by titanium dioxide nanoparticles in toll-like receptor 3 or 4 expressing human hepatocarcinoma cell lines. El-Said KS; Ali EM; Kanehira K; Taniguchi A J Nanobiotechnology; 2014 Dec; 12():48. PubMed ID: 25441061 [TBL] [Abstract][Full Text] [Related]
6. Titanium dioxide nanoparticles induce apoptosis through ROS-Ca Wang Q; Yang Y; Li P; Dong R; Sun C; Song G; Wang Y J Appl Toxicol; 2024 Jun; 44(6):818-832. PubMed ID: 38272789 [TBL] [Abstract][Full Text] [Related]
7. TiO2 nanoparticles-induced apoptosis of primary cultured Sertoli cells of mice. Hong F; Zhao X; Chen M; Zhou Y; Ze Y; Wang L; Wang Y; Ge Y; Zhang Q; Ye L J Biomed Mater Res A; 2016 Jan; 104(1):124-35. PubMed ID: 26238530 [TBL] [Abstract][Full Text] [Related]
8. Effect of titanium dioxide nanoparticles (TiO Kim GO; Choi YS; Bae CH; Song SY; Kim YD Inhal Toxicol; 2017 Jan; 29(1):1-9. PubMed ID: 28183201 [TBL] [Abstract][Full Text] [Related]
9. Nano-TiO Xiao Z; Zheng M; Deng J; Shi Y; Jia M; Li W Ecotoxicol Environ Saf; 2024 Sep; 283():116973. PubMed ID: 39213753 [TBL] [Abstract][Full Text] [Related]
10. Mycobacterium tuberculosis 38-kDa antigen induces endoplasmic reticulum stress-mediated apoptosis via toll-like receptor 2/4. Lim YJ; Choi JA; Lee JH; Choi CH; Kim HJ; Song CH Apoptosis; 2015 Mar; 20(3):358-70. PubMed ID: 25544271 [TBL] [Abstract][Full Text] [Related]
11. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Hussain S; Thomassen LC; Ferecatu I; Borot MC; Andreau K; Martens JA; Fleury J; Baeza-Squiban A; Marano F; Boland S Part Fibre Toxicol; 2010 Apr; 7():10. PubMed ID: 20398356 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrion-Mediated Apoptosis Induced by Acrylamide is Regulated by a Balance Between Nrf2 Antioxidant and MAPK Signaling Pathways in PC12 Cells. Pan X; Yan D; Wang D; Wu X; Zhao W; Lu Q; Yan H Mol Neurobiol; 2017 Aug; 54(6):4781-4794. PubMed ID: 27501804 [TBL] [Abstract][Full Text] [Related]
13. Immunotoxic effects of thymus in mice following exposure to nanoparticulate TiO Hong F; Zhou Y; Zhou Y; Wang L Environ Toxicol; 2017 Oct; 32(10):2234-2243. PubMed ID: 28646487 [TBL] [Abstract][Full Text] [Related]
14. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells. Han SG; Newsome B; Hennig B Toxicology; 2013 Apr; 306():1-8. PubMed ID: 23380242 [TBL] [Abstract][Full Text] [Related]
15. Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Hanot-Roy M; Tubeuf E; Guilbert A; Bado-Nilles A; Vigneron P; Trouiller B; Braun A; Lacroix G Toxicol In Vitro; 2016 Jun; 33():125-35. PubMed ID: 26928046 [TBL] [Abstract][Full Text] [Related]
16. Attenuation of the macrophage inflammatory activity by TiO₂ nanotubes via inhibition of MAPK and NF-κB pathways. Neacsu P; Mazare A; Schmuki P; Cimpean A Int J Nanomedicine; 2015; 10():6455-67. PubMed ID: 26491301 [TBL] [Abstract][Full Text] [Related]
17. Capsular Polysaccharide of Jiang Z; Song F; Li Y; Xue D; Zhao N; Zhang J; Deng G; Li M; Liu X; Wang Y Oxid Med Cell Longev; 2017; 2017():6175841. PubMed ID: 28367270 [TBL] [Abstract][Full Text] [Related]
18. Titanium dioxide nanoparticles induce COX-2 expression through ROS generation in human periodontal ligament cells. Kim DH; Kundu J; Chae IG; Lee JK; Heo JS; Chun KS J Toxicol Sci; 2019; 44(5):335-345. PubMed ID: 31068539 [TBL] [Abstract][Full Text] [Related]
19. Daphnetin-mediated Nrf2 antioxidant signaling pathways ameliorate tert-butyl hydroperoxide (t-BHP)-induced mitochondrial dysfunction and cell death. Lv H; Liu Q; Zhou J; Tan G; Deng X; Ci X Free Radic Biol Med; 2017 May; 106():38-52. PubMed ID: 28188924 [TBL] [Abstract][Full Text] [Related]
20. 7-O-Geranylquercetin induces apoptosis in gastric cancer cells via ROS-MAPK mediated mitochondrial signaling pathway activation. Zhu Y; Jiang Y; Shi L; Du L; Xu X; Wang E; Sun Y; Guo X; Zou B; Wang H; Wang C; Sun L; Zhen Y Biomed Pharmacother; 2017 Mar; 87():527-538. PubMed ID: 28076833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]