These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30425648)

  • 1. Semi-implicit Non-conforming Finite-Element Schemes for Cardiac Electrophysiology: A Framework for Mesh-Coarsening Heart Simulations.
    Jilberto J; Hurtado DE
    Front Physiol; 2018; 9():1513. PubMed ID: 30425648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical study on the effects of spatial and temporal discretization in cardiac electrophysiology.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3443. PubMed ID: 33522111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balancing conduction velocity error in cardiac electrophysiology using a modified quadrature approach.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2022 May; 38(5):e3589. PubMed ID: 35266643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology.
    Hoermann JM; Bertoglio C; Kronbichler M; Pfaller MR; Chabiniok R; Wall WA
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2959. PubMed ID: 29316340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of semi-implicit alternating direction implicit methods for solving cardiac monodomain model.
    Belhamadia Y; Rammal Z
    Comput Biol Med; 2021 Mar; 130():104187. PubMed ID: 33454534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology.
    Pezzuto S; Hake J; Sundnes J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26685879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical method for cardiac mechanoelectric simulations.
    Pathmanathan P; Whiteley JP
    Ann Biomed Eng; 2009 May; 37(5):860-73. PubMed ID: 19263223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A macro finite-element formulation for cardiac electrophysiology simulations using hybrid unstructured grids.
    Rocha BM; Kickinger F; Prassl AJ; Haase G; Vigmond EJ; dos Santos RW; Zaglmayr S; Plank G
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1055-65. PubMed ID: 20699206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving finite element results in modeling heart valve mechanics.
    Earl E; Mohammadi H
    Proc Inst Mech Eng H; 2018 Jul; 232(7):718-725. PubMed ID: 29879869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-based Cardiac Electrophysiology Simulation through the Meshfree Mixed Collocation Method.
    Mountris KA; Doblare M; Pueyo E
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5425-5428. PubMed ID: 34892353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. lifex-ep: a robust and efficient software for cardiac electrophysiology simulations.
    Africa PC; Piersanti R; Regazzoni F; Bucelli M; Salvador M; Fedele M; Pagani S; Dede' L; Quarteroni A
    BMC Bioinformatics; 2023 Oct; 24(1):389. PubMed ID: 37828428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
    Zhang W; Li DS; Bui-Thanh T; Sacks MS
    Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An eikonal approach for the initiation of reentrant cardiac propagation in reaction-diffusion models.
    Jacquemet V
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2090-8. PubMed ID: 20515704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LibHip: An open-access hip joint model repository suitable for finite element method simulation.
    Moshfeghifar F; Gholamalizadeh T; Ferguson Z; Schneider T; Nielsen MB; Panozzo D; Darkner S; Erleben K
    Comput Methods Programs Biomed; 2022 Nov; 226():107140. PubMed ID: 36162245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the performance of finite element simulations on the wheel-rail interaction by using a coupling strategy.
    Ma Y; Markine VL; Mashal AA; Ren M
    Proc Inst Mech Eng F J Rail Rapid Transit; 2018 Jul; 232(6):1741-1757. PubMed ID: 30662167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation.
    He S; Liu Y; Li H
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HPC Framework for Performing in Silico Trials Using a 3D Virtual Human Cardiac Population as Means to Assess Drug-Induced Arrhythmic Risk.
    Aguado-Sierra J; Brigham R; Baron AK; Gomez PD; Houzeaux G; Guerra JM; Carreras F; Filgueiras-Rama D; Vazquez M; Iaizzo PA; Iles TL; Butakoff C
    Methods Mol Biol; 2024; 2716():307-334. PubMed ID: 37702946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inner-outer subcycling algorithm for parallel cardiac electrophysiology simulations.
    Laudenschlager S; Cai XC
    Int J Numer Method Biomed Eng; 2023 Mar; 39(3):e3677. PubMed ID: 36573938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.
    Botti L; Paliwal N; Conti P; Antiga L; Meng H
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3111. PubMed ID: 29858530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.