These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 30425649)

  • 41. MicroRNAs: A Critical Regulator and a Promising Therapeutic and Diagnostic Molecule for Diabetic Cardiomyopathy.
    Mathur P; Rani V
    Curr Gene Ther; 2021; 21(4):313-326. PubMed ID: 33719971
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidative stress and diabetic cardiomyopathy: a brief review.
    Cai L; Kang YJ
    Cardiovasc Toxicol; 2001; 1(3):181-93. PubMed ID: 12213971
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New Diabetes Therapies and Diabetic Kidney Disease Progression: the Role of SGLT-2 Inhibitors.
    Dekkers CCJ; Gansevoort RT; Heerspink HJL
    Curr Diab Rep; 2018 Mar; 18(5):27. PubMed ID: 29589183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets.
    Sung MM; Hamza SM; Dyck JR
    Antioxid Redox Signal; 2015 Jun; 22(17):1606-30. PubMed ID: 25808033
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate.
    Al Hroob AM; Abukhalil MH; Hussein OE; Mahmoud AM
    Biomed Pharmacother; 2019 Jan; 109():2155-2172. PubMed ID: 30551473
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Medicinal chemistry of drugs used in diabetic cardiomyopathy.
    Adeghate E; Kalasz H; Veress G; Teke K
    Curr Med Chem; 2010; 17(6):517-51. PubMed ID: 20015035
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diabetic cardiomyopathy and diastolic heart failure -- difficulties with relaxation.
    Teupe C; Rosak C
    Diabetes Res Clin Pract; 2012 Aug; 97(2):185-94. PubMed ID: 22502812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rutin alleviates diabetic cardiomyopathy and improves cardiac function in diabetic ApoEknockout mice.
    Huang R; Shi Z; Chen L; Zhang Y; Li J; An Y
    Eur J Pharmacol; 2017 Nov; 814():151-160. PubMed ID: 28826911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy.
    Frati G; Schirone L; Chimenti I; Yee D; Biondi-Zoccai G; Volpe M; Sciarretta S
    Cardiovasc Res; 2017 Mar; 113(4):378-388. PubMed ID: 28395009
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy.
    Xu Z; Sun J; Tong Q; Lin Q; Qian L; Park Y; Zheng Y
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27941647
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms underlying diabetic cardiomyopathy: From pathophysiology to novel therapeutic targets.
    Cong S; Ramachandra CJA; Mai Ja KM; Yap J; Shim W; Wei L; Hausenloy DJ
    Cond Med; 2020 Apr; 3(2):82-97. PubMed ID: 34169234
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Interplay between Fasting Glucose, Echocardiography, and Biomarkers: Pathophysiological Considerations and Prognostic Implications.
    Pareek M
    Dan Med J; 2017 Sep; 64(9):. PubMed ID: 28874244
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diabetic cardiomyopathy.
    Acar E; Ural D; Bildirici U; Sahin T; Yılmaz I
    Anadolu Kardiyol Derg; 2011 Dec; 11(8):732-7. PubMed ID: 22137942
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Peroxisome proliferator activator receptors (PPAR), insulin resistance, and cardiomyopathy: friends or foes for the diabetic patient with heart failure?
    Nikolaidis LA; Levine TB
    Cardiol Rev; 2004; 12(3):158-70. PubMed ID: 15078585
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy.
    Yue Y; Meng K; Pu Y; Zhang X
    Diabetes Res Clin Pract; 2017 Nov; 133():124-130. PubMed ID: 28934669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes.
    Seferović PM; Paulus WJ
    Eur Heart J; 2015 Jul; 36(27):1718-27, 1727a-1727c. PubMed ID: 25888006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy.
    Parim B; Sathibabu Uddandrao VV; Saravanan G
    Heart Fail Rev; 2019 Mar; 24(2):279-299. PubMed ID: 30349977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular mechanisms of cardiac pathology in diabetes - Experimental insights.
    Varma U; Koutsifeli P; Benson VL; Mellor KM; Delbridge LMD
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1949-1959. PubMed ID: 29109032
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular Mechanisms and Epigenetic Regulation in Diabetic Cardiomyopathy.
    Mittal A; Garg R; Bahl A; Khullar M
    Front Cardiovasc Med; 2021; 8():725532. PubMed ID: 34977165
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid metabolism and its implications for type 1 diabetes-associated cardiomyopathy.
    Ritchie RH; Zerenturk EJ; Prakoso D; Calkin AC
    J Mol Endocrinol; 2017 May; 58(4):R225-R240. PubMed ID: 28373293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.