These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30425895)

  • 1. Porewater salinity in a southeastern United States salt marsh: controls and interannual variation.
    Miklesh D; Meile C
    PeerJ; 2018; 6():e5911. PubMed ID: 30425895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of freshwater river reconnection on porewater salinity and ammonium availability in coastal brackish marsh soils.
    Feder RC; White JR
    Sci Total Environ; 2024 May; 926():172131. PubMed ID: 38569953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh.
    Krask JL; Buck TL; Dunn RP; Smith EM
    PLoS One; 2022; 17(11):e0278215. PubMed ID: 36441803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.
    Schile LM; Callaway JC; Morris JT; Stralberg D; Parker VT; Kelly M
    PLoS One; 2014; 9(2):e88760. PubMed ID: 24551156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Groundwater controls ecological zonation of salt marsh macrophytes.
    Wilson AM; Evans T; Moore W; Schutte CA; Joye SB; Hughes AH; Anderson JL
    Ecology; 2015 Mar; 96(3):840-9. PubMed ID: 26236879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in synchrony of production among species, sites, and intertidal zones in coastal marshes.
    Liu W; Pennings SC
    Ecology; 2021 Mar; 102(3):e03278. PubMed ID: 33370500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal patterns of daily net photosynthesis, transpiration and net primary productivity of Juncus roemerianus and Spartina alterniflora in a Georgia salt marsh.
    Giurgevich JR; Dunn EL
    Oecologia; 1982 Jan; 52(3):404-410. PubMed ID: 28310403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt for southern New England.
    Watson EB; Wigand C; Davey EW; Andrews HM; Bishop J; Raposa KB
    Estuaries Coast; 2017 May; 40(3):662-681. PubMed ID: 30008627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upslope development of a tidal marsh as a function of upland land use.
    Anisfeld SC; Cooper KR; Kemp AC
    Glob Chang Biol; 2017 Feb; 23(2):755-766. PubMed ID: 27343840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tidal inundation and plant growth/decay impact redox-sensitive metal geochemistry and fluxes in salt marsh porewater.
    Zhong X; Zhou C; Yin X; Zhang T; Xi J; Xu B; Jiang X
    Sci Total Environ; 2024 Feb; 912():169091. PubMed ID: 38056644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt Water Exposure Exacerbates the Negative Response of
    Lynn A; Elsey-Quirk T
    Plants (Basel); 2024 Mar; 13(6):. PubMed ID: 38592938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical properties of marsh vegetation in space and time: effects of salinity, inundation and seasonality.
    Zhu Z; Yang Z; Bouma TJ
    Ann Bot; 2020 Feb; 125(2):277-290. PubMed ID: 31051030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise.
    Donnelly JP; Bertness MD
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14218-23. PubMed ID: 11724926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt Marsh Diking and Restoration: Biogeochemical Implications of Altered Wetland Hydrology.
    Portnoy JW
    Environ Manage; 1999 Jul; 24(1):111-120. PubMed ID: 10341067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salinity pulses interact with seasonal dry-down to increase ecosystem carbon loss in marshes of the Florida Everglades.
    Wilson BJ; Servais S; Mazzei V; Kominoski JS; Hu M; Davis SE; Gaiser E; Sklar F; Bauman L; Kelly S; Madden C; Richards J; Rudnick D; Stachelek J; Troxler TG
    Ecol Appl; 2018 Dec; 28(8):2092-2108. PubMed ID: 30376192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh.
    Charles H; Dukes JS
    Ecol Appl; 2009 Oct; 19(7):1758-73. PubMed ID: 19831068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal variation in apparent conductivity and soil salinity at two Narragansett Bay, RI salt marshes.
    McKinney R; Hanson A; Johnson R; Charpentier M
    PeerJ; 2019; 7():e8074. PubMed ID: 31799073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthropocene survival of southern New England's salt marshes.
    Watson EB; Raposa KB; Carey JC; Wigand C; Warren RS
    Estuaries Coast; 2017 May; 40(3):617-625. PubMed ID: 30271312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.