These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30425979)

  • 1. Does Substrate Positioning Affect the Selectivity and Reactivity in the Hectochlorin Biosynthesis Halogenase?
    Timmins A; Fowler NJ; Warwicker J; Straganz GD; de Visser SP
    Front Chem; 2018; 6():513. PubMed ID: 30425979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2.
    Matthews ML; Neumann CS; Miles LA; Grove TL; Booker SJ; Krebs C; Walsh CT; Bollinger JM
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17723-8. PubMed ID: 19815524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local Charge Distributions, Electric Dipole Moments, and Local Electric Fields Influence Reactivity Patterns and Guide Regioselectivities in α-Ketoglutarate-Dependent Non-heme Iron Dioxygenases.
    de Visser SP; Mukherjee G; Ali HS; Sastri CV
    Acc Chem Res; 2022 Jan; 55(1):65-74. PubMed ID: 34915695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regioselectivity of substrate hydroxylation versus halogenation by a nonheme iron(IV)-oxo complex: possibility of rearrangement pathways.
    Quesne MG; de Visser SP
    J Biol Inorg Chem; 2012 Aug; 17(6):841-52. PubMed ID: 22580819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Do Electrostatic Perturbations of the Protein Affect the Bifurcation Pathways of Substrate Hydroxylation versus Desaturation in the Nonheme Iron-Dependent Viomycin Biosynthesis Enzyme?
    Ali HS; Henchman RH; Warwicker J; de Visser SP
    J Phys Chem A; 2021 Mar; 125(8):1720-1737. PubMed ID: 33620220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Functional Insights into a Nonheme Iron- and α-Ketoglutarate-Dependent Halogenase That Catalyzes Chlorination of Nucleotide Substrates.
    Dai L; Zhang X; Hu Y; Shen J; Zhang Q; Zhang L; Min J; Chen CC; Liu Y; Huang JW; Guo RT
    Appl Environ Microbiol; 2022 May; 88(9):e0249721. PubMed ID: 35435717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective C-H halogenation over hydroxylation by non-heme iron(iv)-oxo.
    Rana S; Biswas JP; Sen A; Clémancey M; Blondin G; Latour JM; Rajaraman G; Maiti D
    Chem Sci; 2018 Oct; 9(40):7843-7858. PubMed ID: 30429994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What Drives Radical Halogenation versus Hydroxylation in Mononuclear Nonheme Iron Complexes? A Combined Experimental and Computational Study.
    Gérard EF; Yadav V; Goldberg DP; de Visser SP
    J Am Chem Soc; 2022 Jun; 144(24):10752-10767. PubMed ID: 35537044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorination versus hydroxylation selectivity mediated by the non-heme iron halogenase WelO5.
    Zhang X; Wang Z; Gao J; Liu W
    Phys Chem Chem Phys; 2020 Apr; 22(16):8699-8712. PubMed ID: 32270839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic Perturbations from the Protein Affect C-H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme.
    Lin YT; Ali HS; de Visser SP
    Chemistry; 2021 Jun; 27(34):8851-8864. PubMed ID: 33978257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic divergencies in the mechanism of L-arginine hydroxylating nonheme iron enzymes.
    Ali HS; de Visser SP
    Front Chem; 2024; 12():1365494. PubMed ID: 38406558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aliphatic C-H Bond Halogenation by Iron(II)-α-Keto Acid Complexes and O
    Jana RD; Sheet D; Chatterjee S; Paine TK
    Inorg Chem; 2018 Aug; 57(15):8769-8777. PubMed ID: 30009593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity.
    Kulik HJ; Blasiak LC; Marzari N; Drennan CL
    J Am Chem Soc; 2009 Oct; 131(40):14426-33. PubMed ID: 19807187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5.
    Mitchell AJ; Zhu Q; Maggiolo AO; Ananth NR; Hillwig ML; Liu X; Boal AK
    Nat Chem Biol; 2016 Aug; 12(8):636-40. PubMed ID: 27348090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second-Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes.
    de Visser SP
    Chemistry; 2020 Apr; 26(24):5308-5327. PubMed ID: 31804749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton-triggered chemoselective halogenation of aliphatic C-H bonds with nonheme Fe
    Pagès-Vilà N; Gamba I; Clémancey M; Latour JM; Company A; Costas M
    J Inorg Biochem; 2024 Jun; 259():112643. PubMed ID: 38924872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavonol biosynthesis by nonheme iron dioxygenases: A computational study into the structure and mechanism.
    Zeb N; Rashid MH; Mubarak MQE; Ghafoor S; de Visser SP
    J Inorg Biochem; 2019 Sep; 198():110728. PubMed ID: 31203088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the oxidative relationships of the metal oxo, hydroxo, and hydroperoxide intermediates with manganese(IV) complexes having bridged cyclams: correlation of the physicochemical properties with reactivity.
    Yin G
    Acc Chem Res; 2013 Feb; 46(2):483-92. PubMed ID: 23194251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why Nonheme Iron Halogenases Do Not Fluorinate C-H Bonds: A Computational Investigation.
    Vennelakanti V; Li GL; Kulik HJ
    Inorg Chem; 2023 Dec; 62(48):19758-19770. PubMed ID: 37972340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural perspective on enzymatic halogenation.
    Blasiak LC; Drennan CL
    Acc Chem Res; 2009 Jan; 42(1):147-55. PubMed ID: 18774824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.