These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 30426127)
21. Core-Multishell-Structured Digital-Gradient Cathode Materials with Enhanced Mechanical and Electrochemical Durability. Shin Y; Maeng S; Chung Y; Krumdick GK; Min S Small; 2021 May; 17(19):e2100040. PubMed ID: 33783108 [TBL] [Abstract][Full Text] [Related]
22. Effect of Ni(2+) content on lithium/nickel disorder for Ni-rich cathode materials. Wu F; Tian J; Su Y; Wang J; Zhang C; Bao L; He T; Li J; Chen S ACS Appl Mater Interfaces; 2015 Apr; 7(14):7702-8. PubMed ID: 25811905 [TBL] [Abstract][Full Text] [Related]
23. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles. Dixit M; Kosa M; Lavi OS; Markovsky B; Aurbach D; Major DT Phys Chem Chem Phys; 2016 Mar; 18(9):6799-812. PubMed ID: 26878345 [TBL] [Abstract][Full Text] [Related]
24. Use of Ce to Reinforce the Interface of Ni-Rich LiNi Wu F; Li Q; Chen L; Lu Y; Su Y; Bao L; Chen R; Chen S ChemSusChem; 2019 Feb; 12(4):935-943. PubMed ID: 30480875 [TBL] [Abstract][Full Text] [Related]
25. Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries. de Biasi L; Schwarz B; Brezesinski T; Hartmann P; Janek J; Ehrenberg H Adv Mater; 2019 Jun; 31(26):e1900985. PubMed ID: 31012176 [TBL] [Abstract][Full Text] [Related]
26. On the Sensitivity of the Ni-rich Layered Cathode Materials for Li-ion Batteries to the Different Calcination Conditions. Ronduda H; Zybert M; Szczęsna-Chrzan A; Trzeciak T; Ostrowski A; Szymański D; Wieczorek W; Raróg-Pilecka W; Marcinek M Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33066108 [TBL] [Abstract][Full Text] [Related]
27. Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg Wang J; Nie Y; Miao C; Tan Y; Wen M; Xiao W J Colloid Interface Sci; 2021 Nov; 601():853-862. PubMed ID: 34116472 [TBL] [Abstract][Full Text] [Related]
28. Suppressing the Structure Deterioration of Ni-Rich LiNi Zhang J; Yang Z; Gao R; Gu L; Hu Z; Liu X ACS Appl Mater Interfaces; 2017 Sep; 9(35):29794-29803. PubMed ID: 28799736 [TBL] [Abstract][Full Text] [Related]
30. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry. Shen S; Hong Y; Zhu F; Cao Z; Li Y; Ke F; Fan J; Zhou L; Wu L; Dai P; Cai M; Huang L; Zhou Z; Li J; Wu Q; Sun S ACS Appl Mater Interfaces; 2018 Apr; 10(15):12666-12677. PubMed ID: 29569902 [TBL] [Abstract][Full Text] [Related]
31. Performance improvement of Li-rich layer-structured Li(1.2)Mn(0.54)Ni(0.13)Co(0.13)O2 by integration with spinel LiNi(0.5)Mn(1.5)O4. Feng X; Yang Z; Tang D; Kong Q; Gu L; Wang Z; Chen L Phys Chem Chem Phys; 2015 Jan; 17(2):1257-64. PubMed ID: 25420544 [TBL] [Abstract][Full Text] [Related]
32. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials. Kozawa T; Naito M Sci Technol Adv Mater; 2015 Feb; 16(1):015006. PubMed ID: 27877756 [TBL] [Abstract][Full Text] [Related]
33. Outstanding Electrochemical Performance of Ni-Rich Concentration-Gradient Cathode Material LiNi Li H; Guo Y; Chen Y; Gao N; Sun R; Lu Y; Chen Q Molecules; 2023 Apr; 28(8):. PubMed ID: 37110580 [TBL] [Abstract][Full Text] [Related]
34. Preparation of long-term cycling stable ni-rich concentration-gradient NCMA cathode materials for li-ion batteries. Jeyakumar J; Seenivasan M; Wu YS; Wu SH; Chang JK; Jose R; Yang CC J Colloid Interface Sci; 2023 Jun; 639():145-159. PubMed ID: 36804788 [TBL] [Abstract][Full Text] [Related]
35. Preliminary studies of mn-rich Li[Li(x)(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.09, 0.11) as cathode active materials for lithium rechargeable batteries. Vediappan K; Park SJ; Kim HS; Lee CW J Nanosci Nanotechnol; 2011 Jan; 11(1):865-70. PubMed ID: 21446563 [TBL] [Abstract][Full Text] [Related]
36. Improving the electrochemical properties of LiNi(0.5)Co(0.2)Mn(0.3)O2 at 4.6 V cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries. Wang J; Yu Y; Li B; Fu T; Xie D; Cai J; Zhao J Phys Chem Chem Phys; 2015 Dec; 17(47):32033-43. PubMed ID: 26573985 [TBL] [Abstract][Full Text] [Related]
37. Conductive Polymers Encapsulation To Enhance Electrochemical Performance of Ni-Rich Cathode Materials for Li-Ion Batteries. Cao Y; Qi X; Hu K; Wang Y; Gan Z; Li Y; Hu G; Peng Z; Du K ACS Appl Mater Interfaces; 2018 May; 10(21):18270-18280. PubMed ID: 29733185 [TBL] [Abstract][Full Text] [Related]
38. Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries. Wang D; Yu R; Wang X; Ge L; Yang X Sci Rep; 2015 Feb; 5():8403. PubMed ID: 25672573 [TBL] [Abstract][Full Text] [Related]
39. Revealing the Dual Surface Reactions on a HE-NCM Li-Ion Battery Cathode and Their Impact on the Surface Chemistry of the Counter Electrode. Leanza D; Vaz CAF; Melinte G; Mu X; Novák P; El Kazzi M ACS Appl Mater Interfaces; 2019 Feb; 11(6):6054-6065. PubMed ID: 30661351 [TBL] [Abstract][Full Text] [Related]
40. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]