These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 30426310)

  • 41. Differential Medial Temporal Lobe and Parietal Cortical Contributions to Real-world Autobiographical Episodic and Autobiographical Semantic Memory.
    Brown TI; Rissman J; Chow TE; Uncapher MR; Wagner AD
    Sci Rep; 2018 Apr; 8(1):6190. PubMed ID: 29670138
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuroimaging studies of semantic memory: inferring "how" from "where".
    Thompson-Schill SL
    Neuropsychologia; 2003; 41(3):280-92. PubMed ID: 12457754
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of feature sharedness in the organization of semantic knowledge: insights from semantic dementia.
    Marques JF; Charnallet A
    Neuropsychology; 2013 Mar; 27(2):266-74. PubMed ID: 23527654
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automatic processing of semantic relations in fMRI: neural activation during semantic priming of taxonomic and thematic categories.
    Sachs O; Weis S; Zellagui N; Huber W; Zvyagintsev M; Mathiak K; Kircher T
    Brain Res; 2008 Jul; 1218():194-205. PubMed ID: 18514168
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neural correlates of semantic priming for ambiguous words: an event-related fMRI study.
    Copland DA; de Zubicaray GI; McMahon K; Eastburn M
    Brain Res; 2007 Feb; 1131(1):163-72. PubMed ID: 17173868
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Semantic and perceptual processing of number symbols: evidence from a cross-linguistic fMRI adaptation study.
    Holloway ID; Battista C; Vogel SE; Ansari D
    J Cogn Neurosci; 2013 Mar; 25(3):388-400. PubMed ID: 23163414
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The neural consequences of semantic richness: when more comes to mind, less activation is observed.
    Pexman PM; Hargreaves IS; Edwards JD; Henry LC; Goodyear BG
    Psychol Sci; 2007 May; 18(5):401-6. PubMed ID: 17576279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network.
    Binney RJ; Ralph MA
    Neuropsychologia; 2015 Sep; 76():170-81. PubMed ID: 25448851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Individual differences in skilled adult readers reveal dissociable patterns of neural activity associated with component processes of reading.
    Welcome SE; Joanisse MF
    Brain Lang; 2012 Mar; 120(3):360-71. PubMed ID: 22281240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intrinsic functional network architecture of human semantic processing: Modules and hubs.
    Xu Y; Lin Q; Han Z; He Y; Bi Y
    Neuroimage; 2016 May; 132():542-555. PubMed ID: 26973170
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mediotemporal contributions to semantic processing: fMRI evidence from ambiguity processing during semantic context verification.
    Hoenig K; Scheef L
    Hippocampus; 2005; 15(5):597-609. PubMed ID: 15884095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compositionality and the angular gyrus: A multi-voxel similarity analysis of the semantic composition of nouns and verbs.
    Boylan C; Trueswell JC; Thompson-Schill SL
    Neuropsychologia; 2015 Nov; 78():130-41. PubMed ID: 26454087
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Right hemisphere activation during indirect semantic priming: evidence from event-related potentials.
    Kiefer M; Weisbrod M; Kern I; Maier S; Spitzer M
    Brain Lang; 1998 Oct; 64(3):377-408. PubMed ID: 9743549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of brain mechanisms underlying the processing of Chinese characters and pseudo-characters: an event-related potential study.
    Wang T; Li H; Zhang Q; Tu S; Yu C; Qiu J
    Int J Psychol; 2010 Apr; 45(2):102-10. PubMed ID: 22043890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing.
    Bookheimer S
    Annu Rev Neurosci; 2002; 25():151-88. PubMed ID: 12052907
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hemispheric dominance for emotions, empathy and social behaviour: evidence from right and left handers with frontotemporal dementia.
    Perry RJ; Rosen HR; Kramer JH; Beer JS; Levenson RL; Miller BL
    Neurocase; 2001; 7(2):145-60. PubMed ID: 11320162
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visual and semantic processing of living things and artifacts: an FMRI study.
    Zannino GD; Buccione I; Perri R; Macaluso E; Lo Gerfo E; Caltagirone C; Carlesimo GA
    J Cogn Neurosci; 2010 Mar; 22(3):554-70. PubMed ID: 19301993
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lexical-semantic deficits in processing food and non-food items.
    Rumiati RI; Foroni F; Pergola G; Rossi P; Silveri MC
    Brain Cogn; 2016 Dec; 110():120-130. PubMed ID: 27651170
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential prefrontal-temporal neural correlates of semantic processing in children.
    Blumenfeld HK; Booth JR; Burman DD
    Brain Lang; 2006 Dec; 99(3):226-35. PubMed ID: 16098571
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of the left anterior temporal lobe in semantic composition vs. semantic memory.
    Westerlund M; Pylkkänen L
    Neuropsychologia; 2014 May; 57():59-70. PubMed ID: 24631260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.