These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30426370)

  • 1. Assessment of the content, occurrence, and leachability of arsenic, lead, and thallium in wastes from coal cleaning processes.
    Makowska D; Strugała A; Wierońska F; Bacior M
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8418-8428. PubMed ID: 30426370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment.
    Fdez-Ortiz de Vallejuelo S; Gredilla A; da Boit K; Teixeira EC; Sampaio CH; Madariaga JM; Silva LF
    Chemosphere; 2017 Feb; 169():725-733. PubMed ID: 27720476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence and mobility of toxic elements in coals from endemic fluorosis areas in the Three Gorges Region, SW China.
    Xiong Y; Xiao T; Liu Y; Zhu J; Ning Z; Xiao Q
    Ecotoxicol Environ Saf; 2017 Oct; 144():1-10. PubMed ID: 28595096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractionation and speciation of arsenic in fresh and combusted coal wastes from Yangquan, northern China.
    Gao X; Wang Y; Hu Q
    Environ Geochem Health; 2012 Feb; 34(1):113-22. PubMed ID: 21638002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation and mobility of thallium in areas impacted by mining-metallurgical activities: Identification of a water-soluble Tl(I) fraction.
    Cruz-Hernández Y; Ruiz-García M; Villalobos M; Romero FM; Meza-Figueroa D; Garrido F; Hernández-Alvarez E; Pi-Puig T
    Environ Pollut; 2018 Jun; 237():154-165. PubMed ID: 29482021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentially toxic elements in fly ash dependently of applied technology of hard coal combustion.
    Smolka-Danielowska D; Fiedor D
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25091-25097. PubMed ID: 29938326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the leaching behavior of elements from coal combustion residues for better management.
    Kumar A; Samadder SR
    Environ Monit Assess; 2015 Jun; 187(6):370. PubMed ID: 26002341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Trace Elements from Used Industrial Waste in Soil improvement.
    Zorluer İ
    An Acad Bras Cienc; 2020; 92(3):e20200974. PubMed ID: 33175018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Modelling of Trace Elements in Hard Coal.
    Smoliński A; Howaniec N
    PLoS One; 2016; 11(7):e0159265. PubMed ID: 27438794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead.
    Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J
    Environ Pollut; 2017 Jul; 226():404-411. PubMed ID: 28416223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.
    Santhanam CJ; Lunt RR; Johnson SL; Cooper CB; Thayer PS; Jones JW
    Environ Health Perspect; 1979 Dec; 33():131-57. PubMed ID: 540614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical study on distribution of multiple dissolved elements and a water quality assessment around a simulated stackable fly ash.
    Wang J
    Ecotoxicol Environ Saf; 2018 Sep; 159():46-55. PubMed ID: 29730408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock.
    Voegelin A; Pfenninger N; Petrikis J; Majzlan J; Plötze M; Senn AC; Mangold S; Steininger R; Göttlicher J
    Environ Sci Technol; 2015 May; 49(9):5390-8. PubMed ID: 25885948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH.
    Komonweeraket K; Cetin B; Benson CH; Aydilek AH; Edil TB
    Waste Manag; 2015 Apr; 38():174-84. PubMed ID: 25555664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure to toxicants in soil and bottom ash deposits in Agbogbloshie, Ghana: human health risk assessment.
    Obiri S; Ansa-Asare OD; Mohammed S; Darko HF; Dartey AG
    Environ Monit Assess; 2016 Oct; 188(10):583. PubMed ID: 27663875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China.
    Xiao T; Guha J; Boyle D; Liu CQ; Chen J
    Sci Total Environ; 2004 Jan; 318(1-3):223-44. PubMed ID: 14654287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods.
    Karbowska B
    Environ Monit Assess; 2016 Nov; 188(11):640. PubMed ID: 27783348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of total arsenic in coal and wood using oxygen flask combustion method followed by hydride generation atomic absorption spectrometry.
    Geng W; Furuzono T; Nakajima T; Takanashi H; Ohki A
    J Hazard Mater; 2010 Apr; 176(1-3):356-60. PubMed ID: 19962236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxic trace elements: preferential concentration in respirable particles.
    Natusch DF; Wallace JR; Evans CA
    Science; 1974 Jan; 183(4121):202-4. PubMed ID: 4808856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.