These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 30426561)
41. Chemical and biological studies of natural and synthetic products for the highly selective control of pest insect species. Matsuda K Biosci Biotechnol Biochem; 2021 Dec; 86(1):1-11. PubMed ID: 34694357 [TBL] [Abstract][Full Text] [Related]
42. Joint action of quercetin with four insecticides on the cotton leaf-worm larvae, Spodoptera littoralis Boisd. (Lep. : Noctuidae) in Egypt. Mesbah HA; Saad AS; Mourad AK; Taman FA; Mohamed IB Commun Agric Appl Biol Sci; 2007; 72(3):445-57. PubMed ID: 18399473 [TBL] [Abstract][Full Text] [Related]
43. Entomopathogens: ecological manipulation of natural associations. Engler R; Rogoff MH Environ Health Perspect; 1976 Apr; 14():153-9. PubMed ID: 789063 [TBL] [Abstract][Full Text] [Related]
44. Assessment of the human and ecological hazards of microbial insecticides. Harrap KA Parasitology; 1982 Apr; 84(Pt 4):269-96. PubMed ID: 7099716 [TBL] [Abstract][Full Text] [Related]
45. Genomics, GPCRs and new targets for the control of insect pests and vectors. Hill CA; Sharan S; Watts VJ Curr Opin Insect Sci; 2018 Dec; 30():99-106. PubMed ID: 30553493 [TBL] [Abstract][Full Text] [Related]
46. The insecticidal potential of venom peptides. Smith JJ; Herzig V; King GF; Alewood PF Cell Mol Life Sci; 2013 Oct; 70(19):3665-93. PubMed ID: 23525661 [TBL] [Abstract][Full Text] [Related]
47. Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Zhang LB; Feng MG Appl Microbiol Biotechnol; 2018 Jun; 102(12):4995-5004. PubMed ID: 29704043 [TBL] [Abstract][Full Text] [Related]
48. An exploratory study of energy reserves and biometry as potential tools for assessing the effects of pest management strategies on the earwig, Forficula auricularia L. Suchail S; Le Navenant A; Capowiez Y; Thiéry A; Rault M Environ Sci Pollut Res Int; 2018 Aug; 25(23):22766-22774. PubMed ID: 29855877 [TBL] [Abstract][Full Text] [Related]
49. Proactive resistance management for sustaining the efficacy of RNA interference for pest control. Gao Y; Alyokhin A; Zhang R; Smagghe G; Palli SR; Jurat-Fuentes JL; Tabashnik BE J Econ Entomol; 2024 Aug; 117(4):1306-1308. PubMed ID: 38748467 [TBL] [Abstract][Full Text] [Related]
50. Microbial management of arthropod pests of tea: current state and prospects. Roy S; Muraleedharan N Appl Microbiol Biotechnol; 2014 Jun; 98(12):5375-86. PubMed ID: 24760230 [TBL] [Abstract][Full Text] [Related]
51. Comparison of cauliflower-insect-fungus interactions and pesticides for cabbage root fly control. Razinger J; Žerjav M; Zemljič-Urbančič M; Modic Š; Lutz M; Schroers HJ; Grunder J; Fellous S; Urek G Insect Sci; 2017 Dec; 24(6):1057-1064. PubMed ID: 28856839 [TBL] [Abstract][Full Text] [Related]
56. Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Lacey LA; Shapiro-Ilan DI Annu Rev Entomol; 2008; 53():121-44. PubMed ID: 17803454 [TBL] [Abstract][Full Text] [Related]
57. Complete genome sequence of Photorhabdus temperata subsp. thracensis 39-8 T, an entomopathogenic bacterium for the improved commercial bioinsecticide. Kwak Y; Shin JH J Biotechnol; 2015 Nov; 214():115-6. PubMed ID: 26415660 [TBL] [Abstract][Full Text] [Related]
59. Is the Insect World Overcoming the Efficacy of Bacillus thuringiensis? Peralta C; Palma L Toxins (Basel); 2017 Jan; 9(1):. PubMed ID: 28106770 [TBL] [Abstract][Full Text] [Related]
60. Efficacy of some plant oils alone and/or combined with different insecticides on the cotton leaf-worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt. Mesbah HA; Mourad AK; Rokaia AZ Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):305-28. PubMed ID: 17385497 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]