These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30426730)

  • 1. Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis.
    Petitdidier N; Koenig A; Gerbelot R; Grateau H; Gioux S; Jallon P
    J Biomed Opt; 2018 Nov; 23(11):1-9. PubMed ID: 30426730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis: a first-in-human clinical trial.
    Koenig A; Petitdidier N; Grateau H; Characoun S; Ghaith A; Verges S; Doutreleau S; Gharbi S; Gerbelot R; Gioux S; Dinten JM
    J Biomed Opt; 2021 Jan; 26(1):. PubMed ID: 33515218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo.
    Yu B; Lo JY; Kuech TF; Palmer GM; Bender JE; Ramanujam N
    J Biomed Opt; 2008; 13(6):060505. PubMed ID: 19123646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe.
    Yu B; Fu H; Bydlon T; Bender JE; Ramanujam N
    Opt Lett; 2008 Aug; 33(16):1783-5. PubMed ID: 18709086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral diffuse reflectance imaging for rapid, noncontact measurement of the optical properties of turbid materials.
    Qin J; Lu R
    Appl Opt; 2006 Nov; 45(32):8366-73. PubMed ID: 17068584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling depth of a diffuse reflectance spectroscopy probe for in-vivo physiological quantification of murine subcutaneous tumor allografts.
    Greening G; Mundo A; Rajaram N; Muldoon TJ
    J Biomed Opt; 2018 Aug; 23(8):1-14. PubMed ID: 30152204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a Time-Resolved Diffuse Optical Spectroscopy Prototype Using Low-Cost, Compact Single Photon Avalanche Detectors for Tissue Optics Applications.
    Alayed M; Palubiak DP; Deen MJ
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a pointwise microcirculation assessment method using liquid and multilayered tissue simulating phantoms.
    Fredriksson I; Saager RB; Durkin AJ; Strömberg T
    J Biomed Opt; 2017 Nov; 22(11):1-9. PubMed ID: 29139245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo measurement of non-keratinized squamous epithelium using a spectroscopic microendoscope with multiple source-detector separations.
    Greening GJ; Rajaram N; Muldoon TJ
    Proc SPIE Int Soc Opt Eng; 2016 Feb; 9715():. PubMed ID: 27134337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subdiffuse scattering model for single fiber reflectance spectroscopy.
    Post AL; Sterenborg HJCM; Woltjer FG; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2020 Jan; 25(1):1-11. PubMed ID: 31920047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment.
    Lue N; Kang JW; Yu CC; Barman I; Dingari NC; Feld MS; Dasari RR; Fitzmaurice M
    PLoS One; 2012; 7(1):e30887. PubMed ID: 22303465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OpenSFDI: an open-source guide for constructing a spatial frequency domain imaging system.
    Applegate M; Karrobi K; Angelo J; Austin W; Tabassum S; Aguénounon E; Tilbury K; Saager R; Gioux S; Roblyer D
    J Biomed Opt; 2020 Jan; 25(1):1-13. PubMed ID: 31925946
    [No Abstract]   [Full Text] [Related]  

  • 16. Methods of extraction of optical properties from diffuse reflectance measurements of ex-vivo human colon tissue using thin film silicon photodetector arrays.
    LaRiviere B; Ferguson NL; Garman KS; Fisher DA; Jokerst NM
    Biomed Opt Express; 2019 Nov; 10(11):5703-5715. PubMed ID: 31799041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma.
    Arifler D; Schwarz RA; Chang SK; Richards-Kortum R
    Appl Opt; 2005 Jul; 44(20):4291-305. PubMed ID: 16045217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mechanical indentation on diffuse reflectance spectra, light transmission, and intrinsic optical properties in ex vivo porcine skin.
    Vogt WC; Izquierdo-Román A; Nichols B; Lim L; Tunnell JW; Rylander CG
    Lasers Surg Med; 2012 Apr; 44(4):303-9. PubMed ID: 22419501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on the Determination System of Tissue Optical Properties Based on Diffuse Reflectance Spectrum].
    Li CX; Sun Z; Han L; Zhao HJ; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1532-6. PubMed ID: 30001058
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.