These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
657 related articles for article (PubMed ID: 30426864)
1. 3D printing mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds for bone repair. Wu J; Miao G; Zheng Z; Li Z; Ren W; Wu C; Li Y; Huang Z; Yang L; Guo L J Biomater Appl; 2019 Jan; 33(6):755-765. PubMed ID: 30426864 [TBL] [Abstract][Full Text] [Related]
2. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067 [TBL] [Abstract][Full Text] [Related]
3. 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Fu S; Du X; Zhu M; Tian Z; Wei D; Zhu Y Biomed Mater; 2019 Oct; 14(6):065011. PubMed ID: 31484173 [TBL] [Abstract][Full Text] [Related]
4. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
5. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143 [TBL] [Abstract][Full Text] [Related]
7. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075 [TBL] [Abstract][Full Text] [Related]
8. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198 [TBL] [Abstract][Full Text] [Related]
9. Development of a borosilicate bioactive glass scaffold incorporating calcitonin gene-related peptide for tissue engineering. Li L; Huang Y; Qin J; Honiball JR; Wen D; Xie X; Shi Z; Cui X; Li B Biomater Adv; 2022 Jul; 138():212949. PubMed ID: 35913241 [TBL] [Abstract][Full Text] [Related]
10. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells. Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297 [TBL] [Abstract][Full Text] [Related]
12. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Wu C; Miron R; Sculean A; Kaskel S; Doert T; Schulze R; Zhang Y Biomaterials; 2011 Oct; 32(29):7068-78. PubMed ID: 21704367 [TBL] [Abstract][Full Text] [Related]
13. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
14. Mesoporous bioactive glass-coated 3D printed borosilicate bioactive glass scaffolds for improving repair of bone defects. Qi X; Wang H; Zhang Y; Pang L; Xiao W; Jia W; Zhao S; Wang D; Huang W; Wang Q Int J Biol Sci; 2018; 14(4):471-484. PubMed ID: 29725268 [No Abstract] [Full Text] [Related]
15. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451 [TBL] [Abstract][Full Text] [Related]
16. Bovine serum albumin-modified 3D printed alginate dialdehyde-gelatin scaffolds incorporating polydopamine/SiO Kim M; Schöbel L; Geske M; Boccaccini AR; Ghorbani F Int J Biol Macromol; 2024 Apr; 264(Pt 2):130666. PubMed ID: 38453119 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. Thomas A; Bera J J Biomater Sci Polym Ed; 2019 May; 30(7):561-579. PubMed ID: 30801229 [TBL] [Abstract][Full Text] [Related]
18. 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering. Chawla D; Kaur T; Joshi A; Singh N Int J Biol Macromol; 2020 Feb; 144():560-567. PubMed ID: 31857163 [TBL] [Abstract][Full Text] [Related]
19. The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique. Tian Y; Liu M; Liu Y; Shi C; Wang Y; Liu T; Huang Y; Zhong P; Dai J; Liu X J Biomed Mater Res A; 2021 Jul; 109(7):1209-1219. PubMed ID: 33021062 [TBL] [Abstract][Full Text] [Related]
20. In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold. Wu Z; Li Q; Xie S; Shan X; Cai Z Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110530. PubMed ID: 32228940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]