These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 30427680)

  • 41. Dual FLT3/TOPK inhibitor with activity against FLT3-ITD secondary mutations potently inhibits acute myeloid leukemia cell lines.
    Dayal N; Opoku-Temeng C; Hernandez DE; Sooreshjani MA; Carter-Cooper BA; Lapidus RG; Sintim HO
    Future Med Chem; 2018 Apr; 10(7):823-835. PubMed ID: 29437468
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combined inhibition of integrin linked kinase and FMS-like tyrosine kinase 3 is cytotoxic to acute myeloid leukemia progenitor cells.
    Muranyi AL; Dedhar S; Hogge DE
    Exp Hematol; 2009 Apr; 37(4):450-60. PubMed ID: 19302919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a potent 5-phenyl-thiazol-2-ylamine-based inhibitor of FLT3 with activity against drug resistance-conferring point mutations.
    Chen CT; Hsu JT; Lin WH; Lu CT; Yen SC; Hsu T; Huang YL; Song JS; Chen CH; Chou LH; Yen KJ; Chen CP; Kuo PC; Huang CL; Liu HE; Chao YS; Yeh TK; Jiaang WT
    Eur J Med Chem; 2015 Jul; 100():151-61. PubMed ID: 26081023
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quizartinib elicits differential responses that correlate with karyotype and genotype of the leukemic clone.
    Nybakken GE; Canaani J; Roy D; Morrissette JD; Watt CD; Shah NP; Smith CC; Bagg A; Carroll M; Perl AE
    Leukemia; 2016 Jun; 30(6):1422-5. PubMed ID: 26585411
    [No Abstract]   [Full Text] [Related]  

  • 45. ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition.
    Ju HQ; Zhan G; Huang A; Sun Y; Wen S; Yang J; Lu WH; Xu RH; Li J; Li Y; Garcia-Manero G; Huang P; Hu Y
    Leukemia; 2017 Oct; 31(10):2143-2150. PubMed ID: 28194038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterizing and Overriding the Structural Mechanism of the Quizartinib-Resistant FLT3 "Gatekeeper" F691L Mutation with PLX3397.
    Smith CC; Zhang C; Lin KC; Lasater EA; Zhang Y; Massi E; Damon LE; Pendleton M; Bashir A; Sebra R; Perl A; Kasarskis A; Shellooe R; Tsang G; Carias H; Powell B; Burton EA; Matusow B; Zhang J; Spevak W; Ibrahim PN; Le MH; Hsu HH; Habets G; West BL; Bollag G; Shah NP
    Cancer Discov; 2015 Jun; 5(6):668-79. PubMed ID: 25847190
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeting CHK1 inhibits cell proliferation in FLT3-ITD positive acute myeloid leukemia.
    Yuan LL; Green A; David L; Dozier C; Récher C; Didier C; Tamburini J; Manenti S
    Leuk Res; 2014 Nov; 38(11):1342-9. PubMed ID: 25281057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Genome-Wide CRISPR Screen Identifies Genes Critical for Resistance to FLT3 Inhibitor AC220.
    Hou P; Wu C; Wang Y; Qi R; Bhavanasi D; Zuo Z; Dos Santos C; Chen S; Chen Y; Zheng H; Wang H; Perl A; Guo D; Huang J
    Cancer Res; 2017 Aug; 77(16):4402-4413. PubMed ID: 28625976
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proteolysis Targeting Chimeras (PROTACs) of Anaplastic Lymphoma Kinase (ALK).
    Zhang C; Han XR; Yang X; Jiang B; Liu J; Xiong Y; Jin J
    Eur J Med Chem; 2018 May; 151():304-314. PubMed ID: 29627725
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antitumor activity of the selective pan-RAF inhibitor TAK-632 in BRAF inhibitor-resistant melanoma.
    Nakamura A; Arita T; Tsuchiya S; Donelan J; Chouitar J; Carideo E; Galvin K; Okaniwa M; Ishikawa T; Yoshida S
    Cancer Res; 2013 Dec; 73(23):7043-55. PubMed ID: 24121489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glutaminase inhibition improves FLT3 inhibitor therapy for acute myeloid leukemia.
    Gregory MA; Nemkov T; Reisz JA; Zaberezhnyy V; Hansen KC; D'Alessandro A; DeGregori J
    Exp Hematol; 2018 Feb; 58():52-58. PubMed ID: 28947392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NFATc1 as a therapeutic target in FLT3-ITD-positive AML.
    Metzelder SK; Michel C; von Bonin M; Rehberger M; Hessmann E; Inselmann S; Solovey M; Wang Y; Sohlbach K; Brendel C; Stiewe T; Charles J; Ten Haaf A; Ellenrieder V; Neubauer A; Gattenlöhner S; Bornhäuser M; Burchert A
    Leukemia; 2015 Jul; 29(7):1470-7. PubMed ID: 25976987
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discovery and Rational Design of Pteridin-7(8H)-one-Based Inhibitors Targeting FMS-like Tyrosine Kinase 3 (FLT3) and Its Mutants.
    Sun D; Yang Y; Lyu J; Zhou W; Song W; Zhao Z; Chen Z; Xu Y; Li H
    J Med Chem; 2016 Jul; 59(13):6187-200. PubMed ID: 27266526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A critical appraisal of Japan's new drug approval process: a case study of FLT3-ITD inhibitor quizartinib.
    Kidoguch K; Shibusawa M; Tanimoto T
    Invest New Drugs; 2021 Dec; 39(6):1457-1459. PubMed ID: 34268710
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crizotinib-based proteolysis targeting chimera suppresses gastric cancer by promoting MET degradation.
    Chen JJ; Jin JM; Gu WJ; Zhao Z; Yuan H; Zhou YD; Nagle DG; Xi QL; Zhang XM; Sun QY; Wu Y; Zhang WD; Luan X
    Cancer Sci; 2023 May; 114(5):1958-1971. PubMed ID: 36692137
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discovery of Potent, Selective, and In Vivo Efficacious AKT Kinase Protein Degraders via Structure-Activity Relationship Studies.
    Yu X; Xu J; Shen Y; Cahuzac KM; Park KS; Dale B; Liu J; Parsons RE; Jin J
    J Med Chem; 2022 Feb; 65(4):3644-3666. PubMed ID: 35119851
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a Novel B-Cell Lymphoma 6 (BCL6) PROTAC To Provide Insight into Small Molecule Targeting of BCL6.
    McCoull W; Cheung T; Anderson E; Barton P; Burgess J; Byth K; Cao Q; Castaldi MP; Chen H; Chiarparin E; Carbajo RJ; Code E; Cowan S; Davey PR; Ferguson AD; Fillery S; Fuller NO; Gao N; Hargreaves D; Howard MR; Hu J; Kawatkar A; Kemmitt PD; Leo E; Molina DM; O'Connell N; Petteruti P; Rasmusson T; Raubo P; Rawlins PB; Ricchiuto P; Robb GR; Schenone M; Waring MJ; Zinda M; Fawell S; Wilson DM
    ACS Chem Biol; 2018 Nov; 13(11):3131-3141. PubMed ID: 30335946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discovery of Novel Benzothiazepinones as Irreversible Covalent Glycogen Synthase Kinase 3β Inhibitors for the Treatment of Acute Promyelocytic Leukemia.
    Zhang P; Min Z; Gao Y; Bian J; Lin X; He J; Ye D; Li Y; Peng C; Cheng Y; Chu Y
    J Med Chem; 2021 Jun; 64(11):7341-7358. PubMed ID: 34027661
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel Amphiphilic PROTAC with Enhanced Pharmacokinetic Properties for ALK Protein Degradation.
    Wang S; Feng Z; Qu C; Yu S; Zhang H; Deng R; Luo D; Pu C; Zhang Y; Li R
    J Med Chem; 2024 Jun; 67(12):9842-9856. PubMed ID: 38839424
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein degradation through covalent inhibitor-based PROTACs.
    Xue G; Chen J; Liu L; Zhou D; Zuo Y; Fu T; Pan Z
    Chem Commun (Camb); 2020 Feb; 56(10):1521-1524. PubMed ID: 31922153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.