BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30427865)

  • 1. Gravitational stress during parabolic flights reduces the number of circulating innate and adaptive leukocyte subsets in human blood.
    Stervbo U; Roch T; Kornprobst T; Sawitzki B; Grütz G; Wilhelm A; Lacombe F; Allou K; Kaymer M; Pacheco A; Vigne J; Westhoff TH; Seibert FS; Babel N
    PLoS One; 2018; 13(11):e0206272. PubMed ID: 30427865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated Changes to the Gravitational Field Negatively Affect the Serum Concentration of Select Growth Factors and Cytokines.
    Stervbo U; Roch T; Westhoff TH; Gayova L; Kurchenko A; Seibert FS; Babel N
    Front Physiol; 2019; 10():402. PubMed ID: 31057415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Changes of Heart Failure Biomarkers in Response to Parabolic Flight.
    Jirak P; Wernly B; Lichtenauer M; Paar V; Franz M; Knost T; Abusamrah T; Kelm M; Muessig JM; Bimpong-Buta NY; Jung C
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32423045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the vestibular system in the arterial pressure response to parabolic-flight-induced gravitational changes in human subjects.
    Iwata C; Abe C; Tanaka K; Morita H
    Neurosci Lett; 2011 May; 495(2):121-5. PubMed ID: 21440600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of parabolic flight on perceived physical, motivational and psychological state in men and women: correlation with neuroendocrine stress parameters and electrocortical activity.
    Schneider S; Askew CD; Brümmer V; Kleinert J; Guardiera S; Abel T; Strüder HK
    Stress; 2009 Jul; 12(4):336-49. PubMed ID: 19006009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventricular chamber sphericity during spaceflight and parabolic flight intervals of less than 1 G.
    Summers RL; Martin DS; Platts SH; Mercado-Young R; Coleman TG; Kassemi M
    Aviat Space Environ Med; 2010 May; 81(5):506-10. PubMed ID: 20464819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood parameter analysis after short term exposure to weightlessness in parabolic flight.
    Bimpong-Buta NY; Jirak P; Wernly B; Lichtenauer M; Knost T; Abusamrah T; Kelm M; Jung C
    Clin Hemorheol Microcirc; 2018; 70(4):477-486. PubMed ID: 30347611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes.
    Acharya A; Brungs S; Lichterfeld Y; Hescheler J; Hemmersbach R; Boeuf H; Sachinidis A
    Cells; 2019 Apr; 8(4):. PubMed ID: 31013958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity.
    Marušič U; Meeusen R; Pišot R; Kavcic V
    Eur J Sport Sci; 2014; 14(8):813-22. PubMed ID: 24734884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mission duration on neuroimmune responses in astronauts.
    Stowe RP; Sams CF; Pierson DL
    Aviat Space Environ Med; 2003 Dec; 74(12):1281-4. PubMed ID: 14692473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight.
    Crucian BE; Cubbage ML; Sams CF
    J Interferon Cytokine Res; 2000 Jun; 20(6):547-56. PubMed ID: 10888111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Changes of dynamic ECG before, during, and after parabolic flight].
    Sun HD; Gai YQ; Xie JS; Yu YR
    Space Med Med Eng (Beijing); 2001 Apr; 14(2):140-3. PubMed ID: 11808570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An analysis of the cardiovascular responses under hyper- and hypo-gravity environments using a mathematical model].
    Hirata Y; Yoshimura K; Nakatomi T; Toda N; Usui S; Nagaoka S
    Uchu Koku Kankyo Igaku; 1999 Jun; 36(2):57-66. PubMed ID: 11543315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies.
    Cogoli A
    J Gravit Physiol; 1996 Apr; 3(1):1-9. PubMed ID: 11539302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroendocrine and immune responses to 16-day bed rest with realistic launch and landing G profiles.
    Stowe RP; Yetman DL; Storm WF; Sams CF; Pierson DL
    Aviat Space Environ Med; 2008 Feb; 79(2):117-22. PubMed ID: 18309909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroendocrine and immune system responses with spaceflights.
    Tipton CM; Greenleaf JE; Jackson CG
    Med Sci Sports Exerc; 1996 Aug; 28(8):988-98. PubMed ID: 8871909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress under normal conditions, hypokinesia simulating weightlessness, and during flights in space.
    Grigor'ev AI; Fedorov BM
    Hum Physiol; 1996; 22(2):139-47. PubMed ID: 11541518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Physiological problems of manned mission to Mars].
    Grigor'ev AI
    Ross Fiziol Zh Im I M Sechenova; 2007 May; 93(5):473-84. PubMed ID: 17650616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of focal contacts in osteoblastic cells--effects of intermittent and continuous gravitational stresses.
    Guignandon A; Usson Y; Laroche N; Vico L; Alexandre C; Lafage-Proust MH
    J Gravit Physiol; 1996 Sep; 3(2):78-9. PubMed ID: 11540292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of the effects of microgravity and of hypergravity on aging and longevity.
    Le Bourg E
    Exp Gerontol; 1999 Jun; 34(3):319-36. PubMed ID: 10433387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.