These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30427878)

  • 1. An open-source k-mer based machine learning tool for fast and accurate subtyping of HIV-1 genomes.
    Solis-Reyes S; Avino M; Poon A; Kari L
    PLoS One; 2018; 13(11):e0206409. PubMed ID: 30427878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ML-DSP: Machine Learning with Digital Signal Processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels.
    Randhawa GS; Hill KA; Kari L
    BMC Genomics; 2019 Apr; 20(1):267. PubMed ID: 30943897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning approach for viral genome classification.
    Remita MA; Halioui A; Malick Diouara AA; Daigle B; Kiani G; Diallo AB
    BMC Bioinformatics; 2017 Apr; 18(1):208. PubMed ID: 28399797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evolutionary model-based algorithm for accurate phylogenetic breakpoint mapping and subtype prediction in HIV-1.
    Kosakovsky Pond SL; Posada D; Stawiski E; Chappey C; Poon AF; Hughes G; Fearnhill E; Gravenor MB; Leigh Brown AJ; Frost SD
    PLoS Comput Biol; 2009 Nov; 5(11):e1000581. PubMed ID: 19956739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward an Alignment-Free Method for Feature Extraction and Accurate Classification of Viral Sequences.
    Lebatteux D; Remita AM; Diallo AB
    J Comput Biol; 2019 Jun; 26(6):519-535. PubMed ID: 31050550
    [No Abstract]   [Full Text] [Related]  

  • 6. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data.
    Ren J; Ahlgren NA; Lu YY; Fuhrman JA; Sun F
    Microbiome; 2017 Jul; 5(1):69. PubMed ID: 28683828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. jpHMM at GOBICS: a web server to detect genomic recombinations in HIV-1.
    Zhang M; Schultz AK; Calef C; Kuiken C; Leitner T; Korber B; Morgenstern B; Stanke M
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W463-5. PubMed ID: 16845050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive Next-Generation Sequencing Method Reveals Deep Genetic Diversity of HIV-1 in the Democratic Republic of the Congo.
    Rodgers MA; Wilkinson E; Vallari A; McArthur C; Sthreshley L; Brennan CA; Cloherty G; de Oliveira T
    J Virol; 2017 Mar; 91(6):. PubMed ID: 28077647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.
    Kurtz S; Narechania A; Stein JC; Ware D
    BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated ultra-fast, memory-efficient, and accurate method for viral genome classification.
    Abadi SAR; Mohammadi A; Koohi S
    J Biomed Inform; 2023 Mar; 139():104316. PubMed ID: 36781036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other tools.
    Pineda-Peña AC; Faria NR; Imbrechts S; Libin P; Abecasis AB; Deforche K; Gómez-López A; Camacho RJ; de Oliveira T; Vandamme AM
    Infect Genet Evol; 2013 Oct; 19():337-48. PubMed ID: 23660484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale machine learning for metagenomics sequence classification.
    Vervier K; Mahé P; Tournoud M; Veyrieras JB; Vert JP
    Bioinformatics; 2016 Apr; 32(7):1023-32. PubMed ID: 26589281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COMET: adaptive context-based modeling for ultrafast HIV-1 subtype identification.
    Struck D; Lawyer G; Ternes AM; Schmit JC; Bercoff DP
    Nucleic Acids Res; 2014 Oct; 42(18):e144. PubMed ID: 25120265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIV type 1 V3 serotyping of Tanzanian samples: probable reasons for mismatching with genetic subtyping.
    Hoelscher M; Hanker S; Barin F; Cheingsong-Popov R; Dietrich U; Jordan-Harder B; Olaleye D; Nägele E; Markuzzi A; Mwakagile D; Minja F; Weber J; Gürtler L; Von Sonnenburg F
    AIDS Res Hum Retroviruses; 1998 Jan; 14(2):139-49. PubMed ID: 9462924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide composition string selection in HIV-1 subtyping using whole genomes.
    Wu X; Cai Z; Wan XF; Hoang T; Goebel R; Lin G
    Bioinformatics; 2007 Jul; 23(14):1744-52. PubMed ID: 17495995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NucAmino: a nucleotide to amino acid alignment optimized for virus gene sequences.
    Tzou PL; Huang X; Shafer RW
    BMC Bioinformatics; 2017 Mar; 18(1):138. PubMed ID: 28249562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Hidden Markov Models for classification of human immunodeficiency virus-1 subtypes through linear classifier learning.
    Bulla I; Schultz AK; Meinicke P
    Stat Appl Genet Mol Biol; 2012 Jan; 11(1):Article 1. PubMed ID: 22499688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Descriptive Statistics of the Genome: Phylogenetic Classification of Viruses.
    Hernandez T; Yang J
    J Comput Biol; 2016 Oct; 23(10):810-20. PubMed ID: 27409298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycofier: a new machine learning-based classifier for fungal ITS sequences.
    Delgado-Serrano L; Restrepo S; Bustos JR; Zambrano MM; Anzola JM
    BMC Res Notes; 2016 Aug; 9(1):402. PubMed ID: 27516337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifractal analysis of HIV-1 genomes.
    Pandit A; Dasanna AK; Sinha S
    Mol Phylogenet Evol; 2012 Feb; 62(2):756-63. PubMed ID: 22155711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.