These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30427900)

  • 21. Functional Threshold Power Is Not Equivalent to Lactate Parameters in Trained Cyclists.
    Jeffries O; Simmons R; Patterson SD; Waldron M
    J Strength Cond Res; 2021 Oct; 35(10):2790-2794. PubMed ID: 31269000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Exercise-Induced Muscle Damage in Well-Trained Cyclists' Aerobic and Anaerobic Performances.
    Karasiak FC; Guglielmo LGA
    J Strength Cond Res; 2018 Sep; 32(9):2623-2631. PubMed ID: 30134381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between blood lactate response to exercise and endurance performance in competitive female master cyclists.
    Nichols JF; Phares SL; Buono MJ
    Int J Sports Med; 1997 Aug; 18(6):458-63. PubMed ID: 9351693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of Anaerobic Threshold by Monitoring the O2 Pulse Changes in Endurance Cyclists.
    Nikooie R
    J Strength Cond Res; 2016 Jun; 30(6):1700-7. PubMed ID: 26554552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of aerobic and anaerobic capacities of elite cyclists from changes in lactate during isocapnic buffering phase.
    Hasanli M; Nikooie R; Aveseh M; Mohammad F
    J Strength Cond Res; 2015 Feb; 29(2):321-9. PubMed ID: 25144132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ergometric and psychological findings during overtraining: a long-term follow-up study in endurance athletes.
    Urhausen A; Gabriel HH; Weiler B; Kindermann W
    Int J Sports Med; 1998 Feb; 19(2):114-20. PubMed ID: 9562220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological factors which influence the performance potential of athletes: analysis of sports medicine performance testing in Nordic combined.
    Schupfner R; Pecher S; Pfeifer E; Stumpf C
    Phys Sportsmed; 2021 Feb; 49(1):106-115. PubMed ID: 32662310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological Correlations With Short, Medium, and Long Cycling Time-Trial Performance.
    Borszcz FK; Tramontin AF; de Souza KM; Carminatti LJ; Costa VP
    Res Q Exerc Sport; 2018 Mar; 89(1):120-125. PubMed ID: 29334005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Higher Accuracy of the Lactate Minimum Test Compared to Established Threshold Concepts to Determine Maximal Lactate Steady State in Running.
    Wahl P; Zwingmann L; Manunzio C; Wolf J; Bloch W
    Int J Sports Med; 2018 Jul; 39(7):541-548. PubMed ID: 29775989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Test-retest reliability of second lactate turnpoint using two different criteria in competitive cyclists.
    Hoefelmann CP; Diefenthaeler F; Costa VP; de Lucas RD; Shambrook P; Guglielmo LG
    Eur J Sport Sci; 2015; 15(4):265-70. PubMed ID: 25135192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of the lactate threshold using an electro acoustic sensor system analysing the respiratory air.
    Folke M
    Med Biol Eng Comput; 2008 Sep; 46(9):939-42. PubMed ID: 18651190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of selected lactate threshold parameters with maximal lactate steady state in cycling.
    Hauser T; Adam J; Schulz H
    Int J Sports Med; 2014 Jun; 35(6):517-21. PubMed ID: 24227122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-intensity Interval Training in the Boundaries of the Severe Domain: Effects on Sprint and Endurance Performance.
    Turnes T; de Aguiar RA; de Oliveira Cruz RS; Pereira K; Salvador AF; Caputo F
    Int J Sports Med; 2016 Nov; 37(12):944-951. PubMed ID: 27551939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-field prediction vs monitoring of aerobic capacity markers using submaximal lactate and heart rate measures.
    Garcia-Tabar I; Izquierdo M; Gorostiaga EM
    Scand J Med Sci Sports; 2017 May; 27(5):462-473. PubMed ID: 28181710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repeated anaerobic tests predict performance among a group of advanced CrossFit-trained athletes.
    Feito Y; Giardina MJ; Butcher S; Mangine GT
    Appl Physiol Nutr Metab; 2019 Jul; 44(7):727-735. PubMed ID: 30500263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of regression model and initial intensity of an incremental test on the relationship between the lactate threshold estimated by the maximal-deviation method and running performance.
    Santos-Concejero J; Tucker R; Granados C; Irazusta J; Bidaurrazaga-Letona I; Zabala-Lili J; Gil SM
    J Sports Sci; 2014; 32(9):853-9. PubMed ID: 24479420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of a field test to determine the maximal aerobic power in triathletes and endurance cyclists.
    González-Haro C; Galilea PA; Drobnic F; Escanero JF
    Br J Sports Med; 2007 Mar; 41(3):174-9. PubMed ID: 17178775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state.
    Faude O; Hecksteden A; Hammes D; Schumacher F; Besenius E; Sperlich B; Meyer T
    Appl Physiol Nutr Metab; 2017 Feb; 42(2):142-147. PubMed ID: 28128633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The science of cycling: physiology and training - part 1.
    Faria EW; Parker DL; Faria IE
    Sports Med; 2005; 35(4):285-312. PubMed ID: 15831059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Field-Based Cycling Test to Assess Predictors of Endurance Performance and Establishing Training Zones.
    Sanders D; Taylor RJ; Myers T; Akubat I
    J Strength Cond Res; 2020 Dec; 34(12):3482-3488. PubMed ID: 28368958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.