These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30428340)

  • 21. Partial disinhibition is required for transition of stimulus-induced sharp wave-ripple complexes into recurrent epileptiform discharges in rat hippocampal slices.
    Liotta A; Caliskan G; ul Haq R; Hollnagel JO; Rösler A; Heinemann U; Behrens CJ
    J Neurophysiol; 2011 Jan; 105(1):172-87. PubMed ID: 20881199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective suppression of hippocampal ripples impairs spatial memory.
    Girardeau G; Benchenane K; Wiener SI; Buzsáki G; Zugaro MB
    Nat Neurosci; 2009 Oct; 12(10):1222-3. PubMed ID: 19749750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep.
    Mölle M; Yeshenko O; Marshall L; Sara SJ; Born J
    J Neurophysiol; 2006 Jul; 96(1):62-70. PubMed ID: 16611848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat.
    Chrobak JJ; Buzsáki G
    J Neurosci; 1996 May; 16(9):3056-66. PubMed ID: 8622135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slow-γ Rhythms Coordinate Cingulate Cortical Responses to Hippocampal Sharp-Wave Ripples during Wakefulness.
    Remondes M; Wilson MA
    Cell Rep; 2015 Nov; 13(7):1327-1335. PubMed ID: 26549454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Downstream effects of hippocampal sharp wave ripple oscillations on medial entorhinal cortex layer V neurons in vitro.
    Roth FC; Beyer KM; Both M; Draguhn A; Egorov AV
    Hippocampus; 2016 Dec; 26(12):1493-1508. PubMed ID: 27479916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Propagation of specific network patterns through the mouse hippocampus.
    Both M; Bähner F; von Bohlen und Halbach O; Draguhn A
    Hippocampus; 2008; 18(9):899-908. PubMed ID: 18493949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms.
    Ylinen A; Bragin A; Nádasdy Z; Jandó G; Szabó I; Sik A; Buzsáki G
    J Neurosci; 1995 Jan; 15(1 Pt 1):30-46. PubMed ID: 7823136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators.
    Donoso JR; Schmitz D; Maier N; Kempter R
    J Neurosci; 2018 Mar; 38(12):3124-3146. PubMed ID: 29453207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The spiking component of oscillatory extracellular potentials in the rat hippocampus.
    Schomburg EW; Anastassiou CA; Buzsáki G; Koch C
    J Neurosci; 2012 Aug; 32(34):11798-811. PubMed ID: 22915121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced age has dissociable effects on hippocampal CA1 ripples and CA3 high frequency events in male rats.
    DiCola NM; Lacy AL; Bishr OJ; Kimsey KM; Whitney JL; Lovett SD; Burke SN; Maurer AP
    Neurobiol Aging; 2022 Sep; 117():44-58. PubMed ID: 35665647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transient slow gamma synchrony underlies hippocampal memory replay.
    Carr MF; Karlsson MP; Frank LM
    Neuron; 2012 Aug; 75(4):700-13. PubMed ID: 22920260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring Ripple Waves in the Human Brain.
    Takagi S
    Clin EEG Neurosci; 2023 Nov; 54(6):594-600. PubMed ID: 34287087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices.
    Ul Haq R; Liotta A; Kovacs R; Rösler A; Jarosch MJ; Heinemann U; Behrens CJ
    Hippocampus; 2012 Mar; 22(3):516-33. PubMed ID: 21254303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation.
    Butler JL; Mendonça PR; Robinson HP; Paulsen O
    J Neurosci; 2016 Apr; 36(15):4155-69. PubMed ID: 27076416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational analysis of network activity and spatial reach of sharp wave-ripples.
    Canakci S; Toy MF; Inci AF; Liu X; Kuzum D
    PLoS One; 2017; 12(9):e0184542. PubMed ID: 28915251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurophysiological signatures of temporal coordination between retrosplenial cortex and the hippocampal formation.
    Alexander AS; Rangel LM; Tingley D; Nitz DA
    Behav Neurosci; 2018 Oct; 132(5):453-468. PubMed ID: 30070554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prominent differences in sharp waves, ripples and complex spike bursts between the dorsal and the ventral rat hippocampus.
    Kouvaros S; Papatheodoropoulos C
    Neuroscience; 2017 Jun; 352():131-143. PubMed ID: 28389377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks.
    Schomburg EW; Fernández-Ruiz A; Mizuseki K; Berényi A; Anastassiou CA; Koch C; Buzsáki G
    Neuron; 2014 Oct; 84(2):470-85. PubMed ID: 25263753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age Is Associated with Reduced Sharp-Wave Ripple Frequency and Altered Patterns of Neuronal Variability.
    Wiegand JP; Gray DT; Schimanski LA; Lipa P; Barnes CA; Cowen SL
    J Neurosci; 2016 May; 36(20):5650-60. PubMed ID: 27194342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.