BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30428348)

  • 1. Human COX7A2L Regulates Complex III Biogenesis and Promotes Supercomplex Organization Remodeling without Affecting Mitochondrial Bioenergetics.
    Lobo-Jarne T; Nývltová E; Pérez-Pérez R; Timón-Gómez A; Molinié T; Choi A; Mourier A; Fontanesi F; Ugalde C; Barrientos A
    Cell Rep; 2018 Nov; 25(7):1786-1799.e4. PubMed ID: 30428348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COX7A2L Is a Mitochondrial Complex III Binding Protein that Stabilizes the III2+IV Supercomplex without Affecting Respirasome Formation.
    Pérez-Pérez R; Lobo-Jarne T; Milenkovic D; Mourier A; Bratic A; García-Bartolomé A; Fernández-Vizarra E; Cadenas S; Delmiro A; García-Consuegra I; Arenas J; Martín MA; Larsson NG; Ugalde C
    Cell Rep; 2016 Aug; 16(9):2387-98. PubMed ID: 27545886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SILAC-based complexome profiling dissects the structural organization of the human respiratory supercomplexes in SCAFI
    Fernández-Vizarra E; López-Calcerrada S; Formosa LE; Pérez-Pérez R; Ding S; Fearnley IM; Arenas J; Martín MA; Zeviani M; Ryan MT; Ugalde C
    Biochim Biophys Acta Bioenerg; 2021 Jul; 1862(7):148414. PubMed ID: 33727070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COX7A2L/SCAFI and Pre-Complex III Modify Respiratory Chain Supercomplex Formation in Different Mouse Strains with a Bcs1l Mutation.
    Davoudi M; Kotarsky H; Hansson E; Kallijärvi J; Fellman V
    PLoS One; 2016; 11(12):e0168774. PubMed ID: 27997587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The respiratory chain supercomplex organization is independent of COX7a2l isoforms.
    Mourier A; Matic S; Ruzzenente B; Larsson NG; Milenkovic D
    Cell Metab; 2014 Dec; 20(6):1069-75. PubMed ID: 25470551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial supercomplex assembly regulates metabolic features and glutamine dependency in mammalian cells.
    Zhang K; Chen L; Wang B; Chen D; Ye X; Han X; Fang Q; Yu C; Wu J; Guo S; Chen L; Shi Y; Wang L; Cheng H; Li H; Shen L; Zhao Q; Jin L; Lyu J; Fang H
    Theranostics; 2023; 13(10):3165-3187. PubMed ID: 37351168
    [No Abstract]   [Full Text] [Related]  

  • 7. A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle.
    Ikeda K; Shiba S; Horie-Inoue K; Shimokata K; Inoue S
    Nat Commun; 2013; 4():2147. PubMed ID: 23857330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial Complex I Activity is Conditioned by Supercomplex I-III
    Lopez-Fabuel I; Resch-Beusher M; Carabias-Carrasco M; Almeida A; Bolaños JP
    Neurochem Res; 2017 Jun; 42(6):1676-1682. PubMed ID: 28197854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaf1 promotes respiratory supercomplexes and metabolic efficiency in zebrafish.
    García-Poyatos C; Cogliati S; Calvo E; Hernansanz-Agustín P; Lagarrigue S; Magni R; Botos M; Langa X; Amati F; Vázquez J; Mercader N; Enríquez JA
    EMBO Rep; 2020 Jul; 21(7):e50287. PubMed ID: 32496654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes.
    Lobo-Jarne T; Pérez-Pérez R; Fontanesi F; Timón-Gómez A; Wittig I; Peñas A; Serrano-Lorenzo P; García-Consuegra I; Arenas J; Martín MA; Barrientos A; Ugalde C
    EMBO J; 2020 Jul; 39(14):e103912. PubMed ID: 32511785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic variability of respiratory complex abundance, organization and activity in mouse brain.
    Buck KJ; Walter NA; Denmark DL
    Genes Brain Behav; 2014 Feb; 13(2):135-43. PubMed ID: 24164700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain.
    Letts JA; Sazanov LA
    Nat Struct Mol Biol; 2017 Oct; 24(10):800-808. PubMed ID: 28981073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation.
    Parmar G; Fong-McMaster C; Pileggi CA; Patten DA; Cuillerier A; Myers S; Wang Y; Hekimi S; Cuperlovic-Culf M; Harper ME
    J Biol Chem; 2024 Feb; 300(2):105626. PubMed ID: 38211818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rcf2 revealed in cryo-EM structures of hypoxic isoforms of mature mitochondrial III-IV supercomplexes.
    Hartley AM; Meunier B; Pinotsis N; Maréchal A
    Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9329-9337. PubMed ID: 32291341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A membrane arm of mitochondrial complex I sufficient to promote respirasome formation.
    Fang H; Ye X; Xie J; Li Y; Li H; Bao X; Yang Y; Lin Z; Jia M; Han Q; Zhu J; Li X; Zhao Q; Yang Y; Lyu J
    Cell Rep; 2021 Apr; 35(2):108963. PubMed ID: 33852835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct Roles of Mitochondrial HIGD1A and HIGD2A in Respiratory Complex and Supercomplex Biogenesis.
    Timón-Gómez A; Garlich J; Stuart RA; Ugalde C; Barrientos A
    Cell Rep; 2020 May; 31(5):107607. PubMed ID: 32375044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COX7A2L genetic variants determine cardiorespiratory fitness in mice and human.
    Benegiamo G; Bou Sleiman M; Wohlwend M; Rodríguez-López S; Goeminne LJE; Laurila PP; Klevjer M; Salonen MK; Lahti J; Jha P; Cogliati S; Enriquez JA; Brumpton BM; Bye A; Eriksson JG; Auwerx J
    Nat Metab; 2022 Oct; 4(10):1336-1351. PubMed ID: 36253618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes.
    Milenkovic D; Misic J; Hevler JF; Molinié T; Chung I; Atanassov I; Li X; Filograna R; Mesaros A; Mourier A; Heck AJR; Hirst J; Larsson NG
    Cell Metab; 2023 Oct; 35(10):1799-1813.e7. PubMed ID: 37633273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic structures of respiratory complex III
    Maldonado M; Guo F; Letts JA
    Elife; 2021 Jan; 10():. PubMed ID: 33463523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ER and Nutrient Stress Promote Assembly of Respiratory Chain Supercomplexes through the PERK-eIF2α Axis.
    Balsa E; Soustek MS; Thomas A; Cogliati S; García-Poyatos C; Martín-García E; Jedrychowski M; Gygi SP; Enriquez JA; Puigserver P
    Mol Cell; 2019 Jun; 74(5):877-890.e6. PubMed ID: 31023583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.