These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 30428711)
1. Effect of the anisotropic permeability in the frequency dependent properties of the superficial layer of articular cartilage. Gastaldi D; Taffetani M; Raiteri R; Vena P Comput Methods Biomech Biomed Engin; 2018 Aug; 21(11):635-644. PubMed ID: 30428711 [TBL] [Abstract][Full Text] [Related]
2. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage. Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384 [TBL] [Abstract][Full Text] [Related]
3. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722 [TBL] [Abstract][Full Text] [Related]
4. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study. Julkunen P; Korhonen RK; Herzog W; Jurvelin JS Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536 [TBL] [Abstract][Full Text] [Related]
5. Importance of the superficial tissue layer for the indentation stiffness of articular cartilage. Korhonen RK; Wong M; Arokoski J; Lindgren R; Helminen HJ; Hunziker EB; Jurvelin JS Med Eng Phys; 2002 Mar; 24(2):99-108. PubMed ID: 11886828 [TBL] [Abstract][Full Text] [Related]
6. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. Korhonen RK; Julkunen P; Wilson W; Herzog W J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490 [TBL] [Abstract][Full Text] [Related]
7. An Equilibrium Constitutive Model of Anisotropic Cartilage Damage to Elucidate Mechanisms of Damage Initiation and Progression. Stender ME; Regueiro RA; Klisch SM; Ferguson VL J Biomech Eng; 2015 Aug; 137(8):081010. PubMed ID: 26043366 [TBL] [Abstract][Full Text] [Related]
8. A quantitative interpretation of the response of articular cartilage to atomic force microscopy-based dynamic nanoindentation tests. Taffetani M; Raiteri R; Gottardi R; Gastaldi D; Vena P J Biomech Eng; 2015 Jul; 137(7):. PubMed ID: 25807472 [TBL] [Abstract][Full Text] [Related]
10. A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations. Pierce DM; Unterberger MJ; Trobin W; Ricken T; Holzapfel GA Biomech Model Mechanobiol; 2016 Feb; 15(1):229-44. PubMed ID: 26001349 [TBL] [Abstract][Full Text] [Related]
11. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. Cao L; Youn I; Guilak F; Setton LA J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764 [TBL] [Abstract][Full Text] [Related]
12. The effect of highly inhomogeneous biphasic properties on mechanical behaviour of articular cartilage. Lin W; Meng Q; Li J; Chen Z; Jin Z Comput Methods Programs Biomed; 2021 Jul; 206():106122. PubMed ID: 33979755 [TBL] [Abstract][Full Text] [Related]
13. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method. Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781 [TBL] [Abstract][Full Text] [Related]
14. A fibril-reinforced poroviscoelastic swelling model for articular cartilage. Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103 [TBL] [Abstract][Full Text] [Related]
15. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model. Garcia JJ; Altiero NJ; Haut RC J Biomech Eng; 2000 Feb; 122(1):1-8. PubMed ID: 10790823 [TBL] [Abstract][Full Text] [Related]
16. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression. Guo H; Maher SA; Torzilli PA J Biomech; 2015 Jan; 48(1):166-70. PubMed ID: 25465194 [TBL] [Abstract][Full Text] [Related]
17. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing. Chen X; Zhou Y; Wang L; Santare MH; Wan LQ; Lu XL Ann Biomed Eng; 2016 Apr; 44(4):1148-58. PubMed ID: 26240062 [TBL] [Abstract][Full Text] [Related]
18. A poroelastic finite element model of the bone-cartilage unit to determine the effects of changes in permeability with osteoarthritis. Stender ME; Regueiro RA; Ferguson VL Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):319-331. PubMed ID: 27635796 [TBL] [Abstract][Full Text] [Related]
19. On the anisotropy and inhomogeneity of permeability in articular cartilage. Federico S; Herzog W Biomech Model Mechanobiol; 2008 Oct; 7(5):367-78. PubMed ID: 17619089 [TBL] [Abstract][Full Text] [Related]
20. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. Wilson W; van Donkelaar CC; van Rietbergen B; Ito K; Huiskes R J Biomech; 2004 Mar; 37(3):357-66. PubMed ID: 14757455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]