BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 30428711)

  • 1. Effect of the anisotropic permeability in the frequency dependent properties of the superficial layer of articular cartilage.
    Gastaldi D; Taffetani M; Raiteri R; Vena P
    Comput Methods Biomech Biomed Engin; 2018 Aug; 21(11):635-644. PubMed ID: 30428711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of the superficial tissue layer for the indentation stiffness of articular cartilage.
    Korhonen RK; Wong M; Arokoski J; Lindgren R; Helminen HJ; Hunziker EB; Jurvelin JS
    Med Eng Phys; 2002 Mar; 24(2):99-108. PubMed ID: 11886828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Equilibrium Constitutive Model of Anisotropic Cartilage Damage to Elucidate Mechanisms of Damage Initiation and Progression.
    Stender ME; Regueiro RA; Klisch SM; Ferguson VL
    J Biomech Eng; 2015 Aug; 137(8):081010. PubMed ID: 26043366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative interpretation of the response of articular cartilage to atomic force microscopy-based dynamic nanoindentation tests.
    Taffetani M; Raiteri R; Gottardi R; Gastaldi D; Vena P
    J Biomech Eng; 2015 Jul; 137(7):. PubMed ID: 25807472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic hydraulic permeability in compressed articular cartilage.
    Reynaud B; Quinn TM
    J Biomech; 2006; 39(1):131-7. PubMed ID: 16271597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations.
    Pierce DM; Unterberger MJ; Trobin W; Ricken T; Holzapfel GA
    Biomech Model Mechanobiol; 2016 Feb; 15(1):229-44. PubMed ID: 26001349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of highly inhomogeneous biphasic properties on mechanical behaviour of articular cartilage.
    Lin W; Meng Q; Li J; Chen Z; Jin Z
    Comput Methods Programs Biomed; 2021 Jul; 206():106122. PubMed ID: 33979755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 2000 Feb; 122(1):1-8. PubMed ID: 10790823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2015 Jan; 48(1):166-70. PubMed ID: 25465194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.
    Chen X; Zhou Y; Wang L; Santare MH; Wan LQ; Lu XL
    Ann Biomed Eng; 2016 Apr; 44(4):1148-58. PubMed ID: 26240062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A poroelastic finite element model of the bone-cartilage unit to determine the effects of changes in permeability with osteoarthritis.
    Stender ME; Regueiro RA; Ferguson VL
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):319-331. PubMed ID: 27635796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the anisotropy and inhomogeneity of permeability in articular cartilage.
    Federico S; Herzog W
    Biomech Model Mechanobiol; 2008 Oct; 7(5):367-78. PubMed ID: 17619089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study.
    Wilson W; van Donkelaar CC; van Rietbergen B; Ito K; Huiskes R
    J Biomech; 2004 Mar; 37(3):357-66. PubMed ID: 14757455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.