BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 30428711)

  • 41. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint.
    Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK
    J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage.
    Federico S; Grillo A; La Rosa G; Giaquinta G; Herzog W
    J Biomech; 2005 Oct; 38(10):2008-18. PubMed ID: 16084201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanomechanical phenotype of chondroadherin-null murine articular cartilage.
    Batista MA; Nia HT; Önnerfjord P; Cox KA; Ortiz C; Grodzinsky AJ; Heinegård D; Han L
    Matrix Biol; 2014 Sep; 38():84-90. PubMed ID: 24892719
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.
    Taffetani M; Gottardi R; Gastaldi D; Raiteri R; Vena P
    Med Eng Phys; 2014 Jul; 36(7):850-8. PubMed ID: 24814573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomechanical properties of human articular cartilage under compressive loads.
    Boschetti F; Pennati G; Gervaso F; Peretti GM; Dubini G
    Biorheology; 2004; 41(3-4):159-66. PubMed ID: 15299249
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates.
    Julkunen P; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2010 Apr; 9(2):237-45. PubMed ID: 19680701
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechano-acoustic determination of Young's modulus of articular cartilage.
    Saarakkala S; Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Jurvelin JS
    Biorheology; 2004; 41(3-4):167-79. PubMed ID: 15299250
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy.
    McLeod MA; Wilusz RE; Guilak F
    J Biomech; 2013 Feb; 46(3):586-92. PubMed ID: 23062866
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomechanical properties of knee articular cartilage.
    Laasanen MS; Töyräs J; Korhonen RK; Rieppo J; Saarakkala S; Nieminen MT; Hirvonen J; Jurvelin JS
    Biorheology; 2003; 40(1-3):133-40. PubMed ID: 12454397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A composition-based cartilage model for the assessment of compositional changes during cartilage damage and adaptation.
    Wilson W; Huyghe JM; van Donkelaar CC
    Osteoarthritis Cartilage; 2006 Jun; 14(6):554-60. PubMed ID: 16476555
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation.
    McGann ME; Bonitsky CM; Ovaert TC; Wagner DR
    J Mech Behav Biomed Mater; 2014 Jun; 34():264-72. PubMed ID: 24631625
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model.
    Chegini S; Ferguson SJ
    J Biomech; 2010 Jun; 43(9):1660-6. PubMed ID: 20392445
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A depth dependent transversely isotropic micromechanic model of articular cartilage.
    Elhamian SM; Alizadeh M; Shokrieh MM; Karimi A
    J Mater Sci Mater Med; 2015 Feb; 26(2):111. PubMed ID: 25665849
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of finite elements to the stress analysis of articular cartilage.
    Goldsmith AA; Hayes A; Clift SE
    Med Eng Phys; 1996 Mar; 18(2):89-98. PubMed ID: 8673324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of ageing on the biomechanical properties of rat articular cartilage.
    Wang L; Kalu DN; Banu J; Thomas JB; Gabriel N; Athanasiou K
    Proc Inst Mech Eng H; 2006 May; 220(4):573-8. PubMed ID: 16808073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of the superficial region in determining the dynamic properties of articular cartilage.
    Gannon AR; Nagel T; Kelly DJ
    Osteoarthritis Cartilage; 2012 Nov; 20(11):1417-25. PubMed ID: 22890186
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural analysis of articular cartilage using multiphoton microscopy: input for biomechanical modeling.
    Lilledahl MB; Pierce DM; Ricken T; Holzapfel GA; Davies Cde L
    IEEE Trans Med Imaging; 2011 Sep; 30(9):1635-48. PubMed ID: 21478075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of structural distortions on articular cartilage permeability under large deformations.
    Maleki M; Hashlamoun K; Herzog W; Federico S
    Biomech Model Mechanobiol; 2020 Feb; 19(1):317-334. PubMed ID: 31506863
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.