BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 30429220)

  • 1. MAPK- and glycogen synthase kinase 3-mediated phosphorylation regulates the DEAD-box protein modulator Gle1 for control of stress granule dynamics.
    Aditi ; Mason AC; Sharma M; Dawson TR; Wente SR
    J Biol Chem; 2019 Jan; 294(2):559-575. PubMed ID: 30429220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions of Gle1 are governed by two distinct modes of self-association.
    Mason AC; Wente SR
    J Biol Chem; 2020 Dec; 295(49):16813-16825. PubMed ID: 32981894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gle1 mediates stress granule-dependent survival during chemotoxic stress.
    Glass L; Wente SR
    Adv Biol Regul; 2019 Jan; 71():156-171. PubMed ID: 30262214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export.
    Montpetit B; Thomsen ND; Helmke KJ; Seeliger MA; Berger JM; Weis K
    Nature; 2011 Apr; 472(7342):238-42. PubMed ID: 21441902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic hGle1A regulates stress granules by modulation of translation.
    Aditi ; Folkmann AW; Wente SR
    Mol Biol Cell; 2015 Apr; 26(8):1476-90. PubMed ID: 25694449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleocytoplasmic shuttling of Gle1 impacts DDX1 at transcription termination sites.
    Sharma M; Wente SR
    Mol Biol Cell; 2020 Oct; 31(21):2398-2408. PubMed ID: 32755435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for Gle1, a regulator of DEAD-box RNA helicases, at centrosomes and basal bodies.
    Jao LE; Akef A; Wente SR
    Mol Biol Cell; 2017 Jan; 28(1):120-127. PubMed ID: 28035044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation impacts GLE1 nuclear localization and association with DDX1.
    Sharma M; Mason AC; Dawson TR; Wente SR
    Adv Biol Regul; 2023 Dec; 90():100990. PubMed ID: 37801910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion of mRNA export regulator DBP5/DDX19, GLE1 or IPPK that is a key enzyme for the production of IP6, resulting in differentially altered cytoplasmic mRNA expression and specific cell defect.
    Okamura M; Yamanaka Y; Shigemoto M; Kitadani Y; Kobayashi Y; Kambe T; Nagao M; Kobayashi I; Okumura K; Masuda S
    PLoS One; 2018; 13(5):e0197165. PubMed ID: 29746542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological inhibition of DEAD-Box RNA Helicase 3 attenuates stress granule assembly.
    Cui BC; Sikirzhytski V; Aksenova M; Lucius MD; Levon GH; Mack ZT; Pollack C; Odhiambo D; Broude E; Lizarraga SB; Wyatt MD; Shtutman M
    Biochem Pharmacol; 2020 Dec; 182():114280. PubMed ID: 33049245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gle1 is a multifunctional DEAD-box protein regulator that modulates Ded1 in translation initiation.
    Bolger TA; Wente SR
    J Biol Chem; 2011 Nov; 286(46):39750-9. PubMed ID: 21949122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An amyotrophic lateral sclerosis-linked mutation in GLE1 alters the cellular pool of human Gle1 functional isoforms.
    Aditi ; Glass L; Dawson TR; Wente SR
    Adv Biol Regul; 2016 Sep; 62():25-36. PubMed ID: 26776475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1.
    Alcázar-Román AR; Bolger TA; Wente SR
    J Biol Chem; 2010 May; 285(22):16683-92. PubMed ID: 20371601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export.
    Alcázar-Román AR; Tran EJ; Guo S; Wente SR
    Nat Cell Biol; 2006 Jul; 8(7):711-6. PubMed ID: 16783363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the C-terminus of the mRNA export factor Dbp5 reveals the interaction surface for the ATPase activator Gle1.
    Dossani ZY; Weirich CS; Erzberger JP; Berger JM; Weis K
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16251-6. PubMed ID: 19805289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation.
    Bolger TA; Folkmann AW; Tran EJ; Wente SR
    Cell; 2008 Aug; 134(4):624-33. PubMed ID: 18724935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1.
    Hodge CA; Tran EJ; Noble KN; Alcazar-Roman AR; Ben-Yishay R; Scarcelli JJ; Folkmann AW; Shav-Tal Y; Wente SR; Cole CN
    Genes Dev; 2011 May; 25(10):1052-64. PubMed ID: 21576265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nup42 and IP
    Adams RL; Mason AC; Glass L; Aditi ; Wente SR
    Traffic; 2017 Dec; 18(12):776-790. PubMed ID: 28869701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dbp5 - from nuclear export to translation.
    Tieg B; Krebber H
    Biochim Biophys Acta; 2013 Aug; 1829(8):791-8. PubMed ID: 23128325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1.
    Chu B; Soncin F; Price BD; Stevenson MA; Calderwood SK
    J Biol Chem; 1996 Nov; 271(48):30847-57. PubMed ID: 8940068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.