These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 30429224)
1. The Peroxidative Cleavage of Kaempferol Contributes to the Biosynthesis of the Benzenoid Moiety of Ubiquinone in Plants. Soubeyrand E; Johnson TS; Latimer S; Block A; Kim J; Colquhoun TA; Butelli E; Martin C; Wilson MA; Basset GJ Plant Cell; 2018 Dec; 30(12):2910-2921. PubMed ID: 30429224 [TBL] [Abstract][Full Text] [Related]
2. Arabidopsis 4-COUMAROYL-COA LIGASE 8 contributes to the biosynthesis of the benzenoid ring of coenzyme Q in peroxisomes. Soubeyrand E; Kelly M; Keene SA; Bernert AC; Latimer S; Johnson TS; Elowsky C; Colquhoun TA; Block AK; Basset GJ Biochem J; 2019 Nov; 476(22):3521-3532. PubMed ID: 31688904 [TBL] [Abstract][Full Text] [Related]
3. 3-O-glycosylation of kaempferol restricts the supply of the benzenoid precursor of ubiquinone (Coenzyme Q) in Arabidopsis thaliana. Soubeyrand E; Latimer S; Bernert AC; Keene SA; Johnson TS; Shin D; Block AK; Colquhoun TA; Schäffner AR; Kim J; Basset GJ Phytochemistry; 2021 Jun; 186():112738. PubMed ID: 33756238 [TBL] [Abstract][Full Text] [Related]
4. Kaempferol as a precursor for ubiquinone (coenzyme Q) biosynthesis: An atypical node between specialized metabolism and primary metabolism. Berger A; Latimer S; Stutts LR; Soubeyrand E; Block AK; Basset GJ Curr Opin Plant Biol; 2022 Apr; 66():102165. PubMed ID: 35026487 [TBL] [Abstract][Full Text] [Related]
5. The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in Arabidopsis. Block A; Widhalm JR; Fatihi A; Cahoon RE; Wamboldt Y; Elowsky C; Mackenzie SA; Cahoon EB; Chapple C; Dudareva N; Basset GJ Plant Cell; 2014 May; 26(5):1938-1948. PubMed ID: 24838974 [TBL] [Abstract][Full Text] [Related]
6. Metabolism of the Flavonol Kaempferol in Kidney Cells Liberates the B-ring to Enter Coenzyme Q Biosynthesis. Fernández-Del-Río L; Soubeyrand E; Basset GJ; Clarke CF Molecules; 2020 Jun; 25(13):. PubMed ID: 32605010 [TBL] [Abstract][Full Text] [Related]
7. A dedicated flavin-dependent monooxygenase catalyzes the hydroxylation of demethoxyubiquinone into ubiquinone (coenzyme Q) in Arabidopsis. Latimer S; Keene SA; Stutts LR; Berger A; Bernert AC; Soubeyrand E; Wright J; Clarke CF; Block AK; Colquhoun TA; Elowsky C; Christensen A; Wilson MA; Basset GJ J Biol Chem; 2021 Nov; 297(5):101283. PubMed ID: 34626646 [TBL] [Abstract][Full Text] [Related]
8. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. Le Gall G; DuPont MS; Mellon FA; Davis AL; Collins GJ; Verhoeyen ME; Colquhoun IJ J Agric Food Chem; 2003 Apr; 51(9):2438-46. PubMed ID: 12696918 [TBL] [Abstract][Full Text] [Related]
9. Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor. Fernández-Del-Río L; Nag A; Gutiérrez Casado E; Ariza J; Awad AM; Joseph AI; Kwon O; Verdin E; de Cabo R; Schneider C; Torres JZ; Burón MI; Clarke CF; Villalba JM Free Radic Biol Med; 2017 Sep; 110():176-187. PubMed ID: 28603085 [TBL] [Abstract][Full Text] [Related]
10. Gene network reconstruction identifies the authentic trans-prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone-9 in Arabidopsis. Ducluzeau AL; Wamboldt Y; Elowsky CG; Mackenzie SA; Schuurink RC; Basset GJ Plant J; 2012 Jan; 69(2):366-75. PubMed ID: 21950843 [TBL] [Abstract][Full Text] [Related]
11. Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. Yin R; Han K; Heller W; Albert A; Dobrev PI; Zažímalová E; Schäffner AR New Phytol; 2014 Jan; 201(2):466-475. PubMed ID: 24251900 [TBL] [Abstract][Full Text] [Related]
12. Kaempferol rhamnoside catabolism in rosette leaves of senescing Arabidopsis and postharvest stored radish. Unterlander N; Mats L; McGary LC; Gordon HOW; Bozzo GG Planta; 2022 Jul; 256(2):36. PubMed ID: 35816223 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation. Tu Y; Liu F; Guo D; Fan L; Zhu Z; Xue Y; Gao Y; Guo M BMC Plant Biol; 2016 Jun; 16(1):132. PubMed ID: 27286810 [TBL] [Abstract][Full Text] [Related]
14. How plants synthesize coenzyme Q. Xu JJ; Hu M; Yang L; Chen XY Plant Commun; 2022 Sep; 3(5):100341. PubMed ID: 35614856 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. Trapero A; Ahrazem O; Rubio-Moraga A; Jimeno ML; Gómez MD; Gómez-Gómez L Plant Physiol; 2012 Aug; 159(4):1335-54. PubMed ID: 22649274 [TBL] [Abstract][Full Text] [Related]
16. Coenzyme Q Biosynthesis: An Update on the Origins of the Benzenoid Ring and Discovery of New Ring Precursors. Fernández-Del-Río L; Clarke CF Metabolites; 2021 Jun; 11(6):. PubMed ID: 34198496 [TBL] [Abstract][Full Text] [Related]
17. A flavonoid 3-O-glucoside:2"-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana. Yonekura-Sakakibara K; Nakabayashi R; Sugawara S; Tohge T; Ito T; Koyanagi M; Kitajima M; Takayama H; Saito K Plant J; 2014 Sep; 79(5):769-82. PubMed ID: 24916675 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterisation of CYP75A31, a new flavonoid 3'5'-hydroxylase, isolated from Solanum lycopersicum. Olsen KM; Hehn A; Jugdé H; Slimestad R; Larbat R; Bourgaud F; Lillo C BMC Plant Biol; 2010 Feb; 10():21. PubMed ID: 20128892 [TBL] [Abstract][Full Text] [Related]
19. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. Onkokesung N; Reichelt M; van Doorn A; Schuurink RC; van Loon JJ; Dicke M J Exp Bot; 2014 May; 65(8):2203-17. PubMed ID: 24619996 [TBL] [Abstract][Full Text] [Related]
20. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit. Catola S; Castagna A; Santin M; Calvenzani V; Petroni K; Mazzucato A; Ranieri A Planta; 2017 Aug; 246(2):263-275. PubMed ID: 28516293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]